Structural, Rotational, Vibrational, and Electronic Properties of Ionized Carbon Clusters $\mathrm{C}_{n}{ }^{+}$($n=4-19$)

M. G. Giuffreda, M. S. Deleuze,* and J.-P. François
Limburgs Universitair Centrum, Institute for Materials Science (IMO), Departement SBG, Universitaire Campus, B-3590 Diepenbeek, Belgium

Received: December 16, 1998; In Final Form: April 26, 1999

Abstract

The structures, rotational moments, vibrational normal modes, and infrared spectra of small to medium-size ionized carbon clusters $\mathrm{C}_{n}{ }^{+}(n=4-19)$ are investigated using density functional (DFT) and coupled cluster (CC) theories. Comparison is made with the neutral systems from which they derive. In contrast to previous restricted open-shell Hartree-Fock (ROHF) results by von Helden and co-workers, electron correlation is shown to strongly limit distortions of the structure upon an adiabatic ionization process. Nonetheless, for such a process, the $\mathrm{C}_{4 n+2}$ and to a lesser extent the $\mathrm{C}_{4 n+1}$ cyclic systems are found to evolve from an essentially regular (i.e., cumulenic) pattern to a more alternating (i.e., polyynic) structure in their ionized forms, whereas the opposite trend is observed for the $\mathrm{C}_{4 n}$ and $\mathrm{C}_{4 n+3}$ rings. Similarly, linear carbon clusters, which can be regarded as mostly cumulenic in their neutral form, tend to become more polyynic after ionization. Rotational moments, IR spectra, and adiabatic ionization potentials as well should provide specific markers of these contrasted characters and behaviors. It has been found that the linear cations show a much more pronounced IR intensity than the cyclic ones. Many of the studied species show a strong absorption in certain regions of the spectrum (e.g., around $2036 \mathrm{~cm}^{-1}$).

Introduction

Carbon clusters C_{n} (refs 1-4 and references therein) are important species in research fields as diverse as astrophysics, material sciences, and combustion processes. C_{n} clusters of various sizes have, e.g., been identified in comet tails and in stellar atmospheres, and a large number of these compounds have been detected in the interstellar space. ${ }^{5-8} \mathrm{C}_{n}$ clusters are of major and direct interest in material sciences, since they play a key role in the preparation of thin diamond films via chemical vapor deposition or cold plasma techniques. ${ }^{9-11}$ Theoretical investigations on carbon nanoclusters are also very topical, owing to their close relationships with fullerenes ${ }^{11-14}$ and their importance in the formation of carbon cages. ${ }^{15}$ A comprehensive understanding of their structure and energetics is at last required for a better catalytic control of their formation and combustion. ${ }^{16}$

The structures and vibrational spectra of neutral C_{n} clusters have been already characterized thoroughly, either theoretically or experimentally (refs $1-6$ and $16-19$ and references therein). On the other hand, the structural and spectroscopic properties of ionized $\mathrm{C}_{n}{ }^{+}$species have not been investigated in detail yet. Traditional spectroscopic methods can only be applied with great difficulty to ionized and highly reactive nanoclusters, and experimentalists rely heavily on theoretical data to safely interpret measurements on such exquisitely exotic systems. Only one series of experimental investigations, based on gas-phase ion chromatography, ${ }^{20,21}$ has been reported for $\mathrm{C}_{n}{ }^{+}$clusters with $n=7-10$. These have been analyzed ${ }^{22}$ on the grounds of calculations at the ROHF (spin-restricted open-shell HartreeFock) level, a rather questionable approximation in view of the importance of electron correlation within such systems. These studies show that carbon cluster cations have cyclic and linear isomers, which for the heavier $\mathrm{C}_{n}{ }^{+}$species coexist with

[^0]significant percentages in the samples under investigation. Either for the linear or the cyclic forms of $\mathrm{C}_{n}{ }^{+}$species, ROHF calculations yield a pronounced polyynic-like ${ }^{23}$ pattern of single and triple bond alternation, with bond lengths oscillating typically between 1.19 and $1.38 \AA .{ }^{22}$ However, the main concern with calculations at the HF level arises precisely from the instability of the wave function of strongly correlated systems toward geometrical distortions. This yields in general a strong overestimation of the alternating character of chains with a small electron band gap, a limiting case being the Peierls distortion of infinitely large metallic chains. ${ }^{24}$

Another important aspect of carbon clusters is their vibrational structure, which, through the interplay of selection rules, ${ }^{25}$ provides a direct experimental information on the nature of the chemical bonds and groups. However, although it is possible to produce ionic species as well as neutral carbon clusters, there are very few experimental spectroscopic and structural studies reported for carbon cluster cations with $n \geq 5$. In general, the recorded spectra are difficult to interpret safely, as the investigated plasmas are most often complex mixtures of several species comprising neutral, cationic, but also possibly anionic clusters in the usual conditions. One example is a Fourier transform IR (FTIR) study of the cyclic $\mathrm{C}_{5}{ }^{+}$cluster produced by laser vaporization of graphite and trapped in a solid argon matrix at $12 \mathrm{~K} .{ }^{26}$ Accurate theoretical data are therefore highly necessary.

In the present paper, taking advantage of the tremendous advances realized over the past few years in computer performances, we report an exhaustive study of the structural, rotational, and vibrational properties of carbon cluster cations $\mathrm{C}_{n}{ }^{+}$ranging from $n=4$ to 19 , using density functional theory (DFT) ${ }^{27}$ and the highly demanding $\operatorname{CCSD}(\mathrm{T})$ treatment (coupled cluster ansatz, including single and double excitations and a perturbative estimate of triple excitations), a benchmark for most
quantum chemical studies. ${ }^{28-30}$ Harmonic frequencies and infrared (IR) absorption activities, as well as the vibrational zeropoint energy, are also evaluated using DFT. As will be shown in the present contribution, studies of the ionization properties and of the geometrical deformations induced by ionization are also quite instrumental to provide a consistent classification of the electronic and structural properties of these very peculiar systems.

Methods

In a comprehensive and systematic study of molecular chains or rings of increasing size, the first problem that arises is the selection of a sufficiently accurate but still tractable method. Ideally, any theoretical investigation of highly reactive clusters should cope with the very strong nondynamical (static) correlation effects present in their ground states. One should consider, among others, calculations at the CASPT2 (complete active space with second-order perturbation theory) ${ }^{31}$ or $\operatorname{CCSD}(\mathrm{T})$ levels of theory. Except for clusters of relatively modest size, the tremendous cost of such methods, especially $\operatorname{CCSD}(\mathrm{T})$, still prevents a full optimization of their molecular structures. Thus, one has to compromise over accuracy if investigations on large systems are to be attempted and/or if relationships with the worlds of polymers or fullerenes are to be established. Since the most reliable post-HF methods are essentially untractable on large compounds, the first treatment that comes to mind in this context is density functional theory (DFT). ${ }^{27}$ As already reported in several instances (see, e.g., ref 32), and as it will be shown again, DFT techniques (in conjunction with an appropriate basis set) can provide structural and vibrational results of a quality comparable to that of $\operatorname{CCSD}(\mathrm{T})$ calculations.

In the present contribution, DFT calculations have been performed using the Becke three-parameter Lee-Yang-Parr (B3LYP) ${ }^{33,34}$ and the Becke three-parameter Perdew-Wang91 (B3PW91) ${ }^{33,35}$ functionals. Geometries and vibrational frequencies have been obtained at the B3LYP and B3PW91 levels in conjunction with a correlation-consistent polarized valence double- ζ (cc-pVDZ) basis set for carbon which is a [3 s 2 p 1 d$]$ contraction of a $(9 \mathrm{~s} 4 \mathrm{p} 1 \mathrm{~d})$ primitive set. ${ }^{36}$

The DFT calculations have been carried out using the GAUSSIAN 94 package ${ }^{37}$ running on two IBM RS/6000 model 365 workstations at Limburgs Universitair Centrum. For the $\operatorname{CCSD}(\mathrm{T})$ calculations, use has been made of the MOLPRO program package. ${ }^{38}$ Geometry optimizations of $\mathrm{C}_{9}{ }^{+}$at the $\operatorname{CCSD}(\mathrm{T})$ level have been performed using ACES II. ${ }^{39}$ The structure of the ionized carbon clusters have been optimized starting from the geometry of the corresponding neutral forms. ${ }^{18}$

Results and Discussion

1. B3LYP versus B3PW91 and CCSD(T)/cc-pVDZ. In a previous study, ${ }^{32}$ three important features clearly emerged from test calculations on small molecules $\left(\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}\right.$, furan, ...). First, it was shown that geometries obtained at the B3LYP/ccpVDZ level are quantitatively comparable to the results of $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVDZ}$ calculations. Second, enlarging the basis set beyond cc-pVDZ does not yield any appreciable improvement. Third, the accuracy of harmonic frequencies at the B3LYP/ccpVDZ is slightly inferior to that at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVDZ}$ level. In a separate study ${ }^{40}$ on the same set of molecules, it was found that geometries fully optimized at the B3PW91/cc-pVDZ level are practically identical to those obtained with B3LYP/cc-pVDZ; the harmonic frequencies at both theoretical levels are further-

TABLE 1. Optimized Geometries (\AA, deg) of $\mathrm{C}_{9}{ }^{+}$at the B3LYP, B3PW91, and CCSD(T)/cc-pVDZ Levels

$\mathrm{C}_{9}{ }^{+}$	B3LYP/ cc-pVDZ		B3PW91/ cc-pVDZ		CCSD(T)/ cc-pVDZ
$C_{2 \nu}$ cyclic	r_{12}	1.319	r_{12}	1.318	
doublet $\left({ }^{2} \mathrm{~B}_{1}\right)$	r_{32}	1.278	r_{32}	1.278	
	r_{43}	1.355	r_{43}	1.352	
	r_{54}	1.250	r_{54}	1.250	
	r_{65}	1.366	r_{65}	1.363	
	θ_{123}	117.0	θ_{123}	117.0	
	θ_{234}	159.3	θ_{234}	160.1	
	θ_{345}	126.7	θ_{345}	126.2	
	θ_{456}	144.6	θ_{456}	144.7	
Doublet	θ_{219}	164.8	θ_{219}	165.9	
	r_{12}	1.324	r_{12}	1.325	r_{12}
	r_{32}	1.285	r_{32}	1.284	r_{32}
	r_{43}	1.290	r_{43}	1.289	r_{43}
	r_{54}	1.284	r_{54}	1.283	r_{54}
					1.301

TABLE 2. Harmonic Frequencies (cm^{-1}) and IR Intensities $(\mathrm{km} / \mathrm{mol})$ of $\mathrm{C}_{9}{ }^{+}$at B3LYP and B3PW91cc-pVDZ Levels ${ }^{a}$

$\mathrm{C}_{9}{ }^{+}$	$\mathrm{B} 3 \mathrm{LYP} / \mathrm{cc}-\mathrm{pVDZ}$	B3PW91/cc-pVDZ
$C_{2 v}$ cyclic	$34\left(\mathrm{~b}_{2}, 93\right), 65\left(\mathrm{a}_{2},{ }^{*}\right)$,	$24\left(\mathrm{~b}_{2}, 92\right), 96\left(\mathrm{a}_{2}, *\right)$,
doublet $\left({ }^{2} \mathrm{~B}_{1}\right)$	$124\left(\mathrm{~b}_{2}, 7\right), 226\left(\mathrm{a}_{2}, *\right)$,	$111\left(\mathrm{~b}_{2}, 9\right), 224\left(\mathrm{a}_{2}, *\right)$,
	$262\left(\mathrm{~b}_{1}, 0\right), 283\left(\mathrm{a}_{1}, 0\right)$,	$262\left(\mathrm{~b}_{1}, 0\right), 280\left(\mathrm{a}_{1}, 0\right)$,
	$371\left(\mathrm{a}_{2}, *\right), 372\left(\mathrm{~b}_{1}, 0\right)$,	$370\left(\mathrm{a}_{2}, *\right), 373\left(\mathrm{~b}_{1}, 0\right)$,
	$405\left(\mathrm{~b}_{1}, 1\right), 490\left(\mathrm{~b}_{2}, 0\right)$,	$409\left(\mathrm{~b}_{1}, 1\right), 489\left(\mathrm{~b}_{2}, 1\right)$,
	$509\left(\mathrm{a}_{1}, 0\right), 562\left(\mathrm{a}_{\mathrm{a}}, 62\right)$,	$508\left(\mathrm{a}_{1}, 0\right), 552\left(\mathrm{a}_{1}, 56\right)$,
	$903\left(\mathrm{a}_{1}, *\right), 957\left(\mathrm{~b}_{2}, 221\right)$,	$912\left(\mathrm{a}_{1}, 3\right)$,
	$1083\left(\mathrm{a}_{1}, 0\right), 1136\left(\mathrm{~b}_{2}, 79\right)$,	$1093\left(\mathrm{a}_{1}, 0\right), 1101\left(\mathrm{~b}_{2}, 0\right)$,
	$1345\left(\mathrm{a}_{1}, 10\right), 1800\left(\mathrm{~b}_{2}, 67\right)$,	$1357\left(\mathrm{a}_{1}, 9\right), 1816\left(\mathrm{~b}_{2}, 71\right)$,
	$1955\left(\mathrm{a}_{1}, 341\right)$,	$1971\left(\mathrm{a}_{1}, 341\right)$,
	$2001\left(\mathrm{~b}_{2}, 163\right)$,	$2004\left(\mathrm{~b}_{2}, 175\right)$,
$\mathrm{D}_{\infty h}$ linear	$2072\left(\mathrm{a}_{1}, 82\right)$	$2092\left(\mathrm{a}_{1}, 88\right)$
doublet	$44(6), 50(2), 78(0), 122(*)$,	$49(2), 57(0), 120(*)$,
	$125(20), 207(4), 238(0)$,	$193(*), 201(4)$,
	$287(*), 434(4), 461\left(\sigma_{\mathrm{g}}, 0\right)$,	$284(*), 411(5), 463\left(\sigma_{\mathrm{g}}, *\right)$,
	$506(0), 601(0), 611(*)$,	$508(*), 592(*), 612(*)$,
	$716(10), 737(0)$,	$726(10), 743(0)$,
	$876\left(\sigma_{\mathrm{u}}, 78\right), 1258\left(\sigma_{\mathrm{g}}, *\right)$,	$878\left(\sigma_{\mathrm{u}}, 83\right), 1261\left(\sigma_{\mathrm{g}}, *\right)$,
	$1575\left(\sigma_{\mathrm{u}}, 357\right)$,	$1581\left(\sigma_{\mathrm{u}}, 403\right)$,
	$1832\left(\sigma_{\mathrm{u}}, 4187\right)$	$1854\left(\sigma_{\mathrm{u}}, 4192\right)$,
	$1897\left(\sigma_{\mathrm{g}}, *\right)$,	$1905\left(\sigma_{\mathrm{g}}, *\right)$,
	$2108\left(\sigma_{\mathrm{u}}, 2133\right)$,	$2117\left(\sigma_{\mathrm{u}}, 2075\right)$,
	$2187\left(\sigma_{\mathrm{g}}, *\right)$	$2200\left(\sigma_{\mathrm{g}},{ }^{*}\right)$

${ }^{a}(*)$ represents IR inactive frequencies and (0) indicates very small intensities ($<0.6 \mathrm{~km} / \mathrm{mol}$).
more nearly the same. Hence, on the premises of these studies, it has been decided to start the present exhaustive study of the structure and vibrations of ionized carbon clusters by assessing the reliability of DFT calculations within the cc-pVDZ basis, using the B3LYP and B3PW91 functionals, against the results of a full geometry optimization of the linear $\mathrm{C}_{9}{ }^{+}$structure at the $\operatorname{CCSD}(\mathrm{T})$ level. Both functionals provide practically the same geometries (Table 1) and harmonic frequencies (Table 2) and are found furthermore to sustain a rather satisfactory comparison with the results of a full $\operatorname{CCSD}(\mathrm{T})$ geometry optimization. In view of this overall excellent agreement and in order to limit the computational cost of these exceedingly demanding calculations, energy differences for the $\mathrm{C}_{n}{ }^{+}$isomers have been evaluated at the $\operatorname{CCSD}(\mathrm{T})$ level from single-point calculations using the B3LYP geometries. One goal of these single-point calculations will thus be in turn to evaluate the accuracy of isomerization energies obtained with the two functionals.
2. Structural Considerations on Cyclic Clusters. All the cyclic carbon cluster cations considered in the present study have been found to be strictly (or practically) planar (Figure

Figure 1. Structures of the investigated cyclic clusters $\mathrm{C}_{n}{ }^{+}(n=4-7,9-11,13-15,17-19)$. All bond lengths and bond angles are equivalent in $\mathrm{C}_{8}{ }^{+}\left(C_{s}\right), \mathrm{C}_{12}{ }^{+}\left(D_{6 h}\right)$, and $\mathrm{C}_{16}{ }^{+}\left(D_{8 h}\right)$.
1). This is in particular the case for the $\mathrm{C}_{5}{ }^{+}$and $\mathrm{C}_{9}{ }^{+}$species, the neutral counterparts of which exhibit ${ }^{18}$ a slight but net deviation from planarity. Releasing symmetry constraints in a B3LYP optimization of $\mathrm{C}_{9}{ }^{+}$, for instance, does not yield distortions from planarity larger than $0.014 \AA$ (deviations measured from the average plane of the ring). The corresponding energy lowering does not exceed $8 \mathrm{cal} / \mathrm{mol}$. The bond lengths of the cyclic $\mathrm{C}_{n}{ }^{+}$cations in their doublet and quartet states are collected in Table 3. For completeness and comparison purposes, we have also included in that table the geometrical parameters of the corresponding neutral species in their ground singlet states. To simplify the comparison, we present in Table 4 the bond length alternations defined as the absolute values of the differences between successive bond lengths of the neutral (singlet states) and ionized (doublet states) cyclic C_{n} clusters.

In close parallelism with the neutral species, ${ }^{18}$ it is found that the $\mathrm{C}_{4 n}{ }^{+}$species ($n=2-4$) display a clear alternation pattern of short " $\mathrm{C} \equiv \mathrm{C}$ " and large " $\mathrm{C}-\mathrm{C}$ " bond lengths and can therefore be referred to as "polyynic", ${ }^{23}$ whereas the $\mathrm{C}_{4 n+2}{ }^{+}$ species ($n=1-4$) are essentially nonalternating and can thus be described as "cumulenic", ${ }^{18}$ in sharp contrast to the conclusions drawn by von Helden et al. ${ }^{22}$ from their ROHF calculations
on $\mathrm{C}_{6}{ }^{+}$and $\mathrm{C}_{10}{ }^{+}$. ROHF theory yields a much too pronounced polyynic pattern, in the form of a strong alternation of bond lengths, as a result of an instability of the ROHF wave function toward geometrical distortions. This deficiency is clearly remedied when electron correlation is included. The chemical bonding characteristics of cyclic $\mathrm{C}_{n}{ }^{+}$clusters, as well as of their neutral counterparts, are thus reminiscent of the Hückel topological rules for the $4 n$ and $4 n+2 \pi$-electron system of antiaromatic and aromatic cyclic $\mathrm{C}_{n} \mathrm{H}_{n}$ polyenes, respectively. In this case, one should also take into account that carbon clusters develop out-of-plane but also in-plane π-electron conjugation; ${ }^{17}$ the latter prevents strong departures from planarity, as for cyclooctatetraene. ${ }^{41}$

In general, for the largest cyclic cations with a clearly defined polyynic character (e.g., $\mathrm{C}_{8}{ }^{+}, \mathrm{C}_{12}{ }^{+}, \mathrm{C}_{16}{ }^{+}$), correlation effects are found to yield a strong decrease of the bond length alternation, as a result of the mixture of the occupied and virtual spaces, characterized by a reversal of the bonding/antibonding pattern of molecular orbitals; for these systems, the bond lengths oscillate typically between 1.27 and $1.33 \AA$ only. Correspondingly, for the ionized but also for the neutral systems and as shown from the data displayed in Tables 3 and 4, bond

TABLE 3. Geometries of the Cyclic $\mathrm{C}_{n}{ }^{+}$Cations Compared with Those of the C_{n} Neutral Systems ${ }^{a}$ at the B3LYP/cc-pVDZ Level
$\mathrm{C}_{4}{ }^{+}$

$\mathrm{C}_{5}{ }^{+}$

$r=1.393$
${ }^{1} \mathrm{~A}_{\mathrm{g}}\left(D_{2 h}\right)$ neutral $^{a} \quad r=1.454$
${ }^{2} \mathrm{~A}^{\prime}\left(C_{S}\right)$
${ }^{4} \mathrm{~A}_{2}\left(C_{2 v}\right)$
${ }^{1} \mathrm{~A}_{1}\left(C_{2}\right)$ neutral
$\mathrm{C}_{6}{ }^{+}$
${ }^{2} \mathrm{~A}_{1}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~B}_{2}\left(C_{2 v}\right)$
${ }^{2} \mathrm{~A}_{1}\left(C_{2 v}\right) \mathrm{ROHF}^{b}$
${ }^{1} \mathrm{~A}^{\prime}{ }_{1}\left(D_{3 h}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{7}{ }^{+}$
${ }^{2} \mathrm{~A}^{\prime}\left(C_{s}\right)$
${ }^{4} \mathrm{~B}_{1}\left(C_{2 v}\right)$
${ }^{2} \mathrm{~B}_{1}\left(C_{2 v}\right)$ ROHF
${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{8}{ }^{+}$
${ }^{2} \mathrm{~A}^{\prime \prime}\left(C_{s}\right)$
${ }^{4} \mathrm{~A}_{1}\left(C_{2 v}\right)$
${ }^{2} \mathrm{~A}^{\prime \prime}\left(C_{s}\right) \mathrm{ROHF}^{b}$
${ }^{1} \mathrm{Ag}_{\mathrm{g}}\left(C_{4 h}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{9}{ }^{+}$
${ }^{2} \mathrm{~B}_{1}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~A}_{2}\left(C_{2 v}\right)$
${ }^{2} \mathrm{~A}^{2}\left(C_{2}\right) \mathrm{ROHF}^{b}$
${ }^{1} \mathrm{~A}\left(C_{1}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{10}{ }^{+}$
${ }^{2} \mathrm{~B}_{2}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~B}_{1}\left(C_{2 v}\right)$
${ }^{2} \mathrm{~A}^{\prime}\left(C_{s}\right)^{b}$
${ }^{1} \mathrm{~A}_{1}^{\prime}\left(D_{5 h}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{11}{ }^{+}$
${ }^{2} \mathrm{~A}_{1}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~B}_{1}\left(C_{2 v}\right)$
${ }^{2} \mathrm{~A}^{\prime \prime}\left(C_{s}\right)^{b}$
${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{12}{ }^{+}$
${ }^{2} \mathrm{~A}_{2 \mathrm{~g}}\left(D_{6 h}\right)$
${ }^{4} \mathrm{~B}_{1 \mathrm{u}}\left(D_{6 h}\right)$
${ }^{1}$? ($C_{6 h}$) neutral ${ }^{a}$
$\mathrm{C}_{13}{ }^{+}$
${ }^{2} \mathrm{~A}\left(C_{1}\right)$
${ }^{4} \mathrm{~A}_{2}\left(C_{2 v}\right)$
${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{14}{ }^{+}$
${ }^{2} \mathrm{~B}_{2}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~B}_{1}\left(C_{2 v}\right)$
${ }^{1}$? $\left(D_{7 h}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{15}{ }^{+}$
${ }^{2} \mathrm{~B}_{1}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~A}_{1}\left(C_{2 v}\right)$
${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{16}{ }^{+}$
${ }^{2 ?}{ }_{4} ?\left(D_{8 h}\right)$
${ }^{1}$? $\left(C_{8 h}\right)$ neutral ${ }^{a}$
$\mathrm{C}_{17}{ }^{+}$
${ }^{2}{ }^{2} \mathrm{~B}_{1}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~A}_{2}\left(C_{2 v}\right)$
${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$ neutral $\mathrm{C}_{18}{ }^{+}$
${ }^{2} \mathrm{~A}_{1}\left(C_{2 v}\right)$
${ }^{4} \mathrm{~B}_{2}\left(C_{2 v}\right)$
${ }^{1}$? $\left(D_{9 h}\right)$ neutral a
$\mathrm{C}_{19}{ }^{+}$
${ }^{2} \mathrm{~A}_{2}\left(C_{2 v}\right)$
${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$ neutral

$$
\begin{aligned}
& \begin{array}{l}
r=1.393 \\
r=1.454
\end{array} \\
& r_{21}=1.495, r_{32}=1.326, r_{43}=1.450, r_{54}=1.326, r_{51}=1.499 \\
& r_{21}=1.402, r_{32}=1.343, r_{43}=1.352 \\
& r_{21}=1.365, r_{32}=1.436, r_{43}=1.568 \\
& r_{21}=1.329, r_{32}=1.297, r_{43}=1.356 \\
& r_{21}=1.355, r_{32}=1.356, r_{43}=1.357 \\
& r_{21}=1.307, r_{32}=1.272, r_{43}=1.361 \\
& r=1.332 \\
& r_{21}=1.312, r_{32}=1.310, r_{43}=1.311, r_{54}=1.390, r_{65}=1.311, r_{76}=1.310, r_{71}=1.312 \\
& r_{21}=1.357, r_{32}=1.305, r_{43}=1.282, r_{54}=1.398 \\
& r_{21}=1.301, r_{32}=1.297, r_{43}=1.301, r_{54}=1.369 \\
& r_{21}=1.332, r_{32}=1.352, r_{43}=1.405, r_{54}=1.270 \\
& r_{21}=1.290, r_{32}=1.352 \\
& r=1.313 \\
& r_{21}=1.337, r_{32}=1.278 \\
& r_{21}=1.267, r_{32}=1.389 \\
& r_{21}=1.319, r_{32}=1.278, r_{43}=1.355, r_{54}=1.250, r_{65}=1.366 \\
& r_{21}=1.314, r_{32}=1.289, r_{43}=1.344, r_{54}=1.262, r_{65}=1.374 \\
& r_{21}=1.273, r_{32}=1.328, r_{43}=1.255, r_{54}=1.340, r_{65}=1.292, r_{76}=1.300, r_{87}=1.383, r_{98}=1.221, r_{91}=1.418 \\
& r_{21}=1.320, r_{32}=1.311, r_{43}=1.314, r_{54}=1.314, r_{65}=1.312, r_{76}=1.321, r_{87}=1.312, r_{98}=1.335, r_{91}=1.311 \\
& r_{21}=1.291, r_{32}=1.309, r_{43}=1.279, r_{54}=1.309, r_{65}=1.293 \\
& r_{21}=1.299, r_{32}=1.328, r_{43}=1.279, r_{54}=1.325, r_{65}=1.295 \\
& r_{21}=1.335, r_{32}=1.242, r_{43}=1.306, r_{54}=1.269, r_{65}=1.289 \\
& r=1.301 \\
& r_{21}=1.299, r_{32}=1.292, r_{43}=1.310, r_{54}=1.280, r_{65}=1.324, r_{76}=1.267 \\
& r_{21}=1.320, r_{32}=1.272, r_{43}=1.351, r_{54}=1.262, r_{65}=1.346, r_{76}=1.265 \\
& r_{21}=1.300, r_{32}=1.245, r_{43}=1.342, r_{54}=1.217, r_{65}=1.362 \\
& r_{21}=1.303, r_{32}=1.321, r_{43}=1.286, r_{54}=1.351, r_{65}=1.255, r_{76}=1.367 \\
& r_{21}=1.275, r_{32}=1.328 \\
& r_{21}=1.296, r_{32}=1.272 \\
& r_{21}=1.255, r_{32}=1.357 \\
& r_{21}=1.306, r_{32}=1.273, r_{43}=1.330, r_{54}=1.253, r_{65}=1.347, r_{76}=1.243, r_{87}=1.351, r_{98}=1.245 \text {, } \\
& \mathrm{r}_{10,9}=1.343, r_{11,10}=1.258, r_{12,11}=1.323, r_{13,12}=1.280, r_{13,1}=1.298 \\
& r_{21}=1.298, r_{32}=1.283, r_{43}=1.314, r_{54}=1.269, r_{65}=1.325, r_{76}=1.261, r_{87}=1.330 \\
& r_{21}=1.301, r_{32}=1.285, r_{43}=1.315, r_{54}=1.271, r_{65}=1.325, r_{76}=1.262, r_{87}=1.328 \\
& r_{21}=1.287, r_{32}=1.298, r_{43}=1.277, r_{54}=1.302, r_{65}=1.277, r_{76}=1.298, r_{87}=1.287 \\
& r_{21}=1.289, r_{32}=1.306, r_{43}=1.276, r_{54}=1.313, r_{65}=1.276, r_{76}=1.306, r_{87}=1.289 \\
& r=1.291 \\
& r_{21}=1.292, r_{32}=1.280, r_{43}=1.305, r_{54}=1.269, r_{65}=1.314, r_{76}=1.262, r_{87}=1.320, r_{98}=1.260 \\
& r_{21}=1.288, r_{32}=1.306, r_{43}=1.276, r_{54}=1.305, r_{65}=1.288, r_{76}=1.287, r_{87}=1.307, r_{98}=1.275 \\
& r_{21}=1.296, r_{32}=1.311, r_{43}=1.280, r_{54}=1.326, r_{65}=1.264, r_{76}=1.338, r_{87}=1.251, r_{98}=1.343 \\
& r_{21}=1.291, r_{32}=1.293 \\
& r_{21}=1.288, r_{32}=1.306 \\
& r_{21}=1.296, r_{32}=1.311 \\
& r_{21}=1.295, r_{32}=1.277, r_{43}=1.313, r_{54}=1.261, r_{65}=1.329, r_{76}=1.250, r_{87}=1.340, r_{98}=1.243, r_{10,9}=1.344 \\
& r_{21}=1.293, r_{32}=1.282, r_{43}=1.303, r_{54}=1.273, r_{65}=1.312, r_{76}=1.266, r_{87}=1.318, r_{98}=1.262, r_{10.9}=1.320 \\
& r_{21}=1.295, r_{32}=1.282, r_{43}=1.307, r_{54}=1.271, r_{65}=1.317, r_{76}=1.263, r_{87}=1.324, r_{98}=1.258, r_{10,9}=1.326 \\
& r_{21}=1.300, r_{32}=1.275, r_{43}=1.297, r_{54}=1.281, r_{65}=1.290 \\
& r_{21}=1.336, r_{32}=1.252, r_{43}=1.325, r_{54}=1.270, r_{65}=1.299 \\
& r=1.288 \\
& \begin{array}{l}
r_{21}=1.285, r_{32}=1.295, r_{43}=1.276, r_{54}=1.304, r_{65}=1.268, r_{76}=1.311, r_{87}=1.263, r_{98}=1.315, r_{109}=1.260, r_{11,10}=1.317 \\
r_{21}=1.286, r_{32}=1.301, r_{43}=1.272, r_{54}=1.314, r_{65}=1.261, r_{76}=1.325, r_{87}=1.254, r_{98}=1.332, r_{10,9}=1.250, r_{11,10}=1.335
\end{array}
\end{aligned}
$$

${ }^{a}$ Martin, J. M. L.; El-Yazal, J.; François, J. P. Chem. Phys. Lett. 1995, 242, 570; Chem. Phys. Lett. 1996, 252, 9. ${ }^{b}$ von Helden, G.; Gotts, N. G.; Palke, W. E.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1994, 138, 33. Symmetrically redundant data are not given, atoms are labelled consecutively (clockwise) according to the definitions of Figure 1, and bond lengths are in A. For comparison purposes, the ROHF/6$31 \mathrm{~g}(\mathrm{~d})$ results by von Helden et al. are also included. (?) indicates that no consistent treatment of symmetry groups containing rotation axis of large but finite orders such as $C_{6 h}, D_{7 h}, D_{8 h}, D_{9 h}$ were possible ${ }^{a}$ with the GAUSSIAN94 package.

TABLE 4. Successive Bond Length Alternations (in \AA) in Cyclic Carbon Clusters in Their Doublet States

$\mathrm{C}_{4}{ }^{+}$	0.000	
C_{4}	0.000	
$\mathrm{C}_{8}{ }^{+}$	0.062	
C_{8}	0.123	
$\mathrm{C}_{12}{ }^{+}$	0.052	
C_{12}	0.102	
$\mathrm{C}_{16}+$	0.002	
C_{16}	0.014	

" $4 n+2$ " Species: Cumulenic									
$\mathrm{C}_{6}{ }^{+}$	0.032	0.059	0.000						
C_{6}	0.000	0.000	0.000						
$\mathrm{C}_{10}+$	0.018	0.030	0.029	0.016					
C_{10}	0.000	0.000	0.000	0.000					
$\mathrm{C}_{14}+$	0.011	0.021	0.025						
C_{14}	0.000	0.000	0.000						
$\mathrm{C}_{18}{ }^{+}$	0.025	0.022	0.016	0.009					
C_{18}	0.000	0.000	0.000	0.000					
" $4 n+1$ " Species: Cumulenic									
$\mathrm{C}_{5}{ }^{+}$	0.168	0.045	0.049	0.174	0.002				
C_{5}	0.071	0.132	0.132	0.071	0.000				
$\mathrm{C}_{9}{ }^{+}$	0.041	0.077	0.105	0.117	0.117	0.105	0.077	0.041	
C_{9}	0.008	0.008	0.024	0.038	0.009	0.010	0.003	0.002	
$\mathrm{C}_{13}{ }^{+}$	0.033	0.057	0.077	0.093	0.104	0.104			
C_{13}	0.016	0.030	0.044	0.053	0.062	0.065			
$\mathrm{C}_{17}{ }^{+}$	0.018	0.036	0.052	0.068	0.080	0.091	0.097	0.101	
C_{17}	0.012	0.025	0.036	0.046	0.054	0.061	0.066	0.068	
" $4 n+3$ " Species: Polyynic									
$\mathrm{C}_{7}{ }^{+}$	0.0001	0.002	0.001	0.079	0.079	0.001	0.002		
C_{7}	0.020	0.053	0.135	0.135	0.053	0.020	0.000		
$\mathrm{C}_{11}+$	0.008	0.018	0.030	0.044	0.057				
C_{11}	0.018	0.036	0.065	0.096	0.011				
$\mathrm{C}_{15}{ }^{+}$	0.013	0.025	0.036	0.045	0.052	0.058	0.060		
C_{15}	0.015	0.031	0.046	0.062	0.074	0.088	0.093		
$\mathrm{C}_{19}+$	0.010	0.019	0.028	0.035	0.043	0.048	0.053	0.055	0.057
C_{19}	0.015	0.028	0.042	0.053	0.064	0.071	0.078	0.082	0.085

alternations tend overall to diminish with increasing system size, an observation that can be related to the closure of the electronic band gap and the construction of the electron band structure ${ }^{42}$ of a stereoregular polymer chain with metallic properties.

From a comparison with the geometrical structures of the neutral species optimized by Martin et al. ${ }^{18}$ (see Tables 3 and 4), ionization appears to yield a significant decrease of the bond length alternation of the polyynic $\mathrm{C}_{4 n}$ cyclic clusters, and on the contrary a slight but significant departure from a completely nonalternating pattern in the cumulenic $\mathrm{C}_{4 n+2}$ systems. In both cases, this behavior can be easily rationalized from the topologies and degeneracies of the outermost orbitals.

In a polyynic case, e.g., C_{8} (Figure 2), the two highest occupied molecular orbitals (HOMO and HOMO-1) are not degenerate and reflect the double antiaromaticity of the cluster. The HOMO $\left(2 b_{u}\right.$ in the case of $\left.\mathrm{C}_{8}\right)$ is of π-symmetry and relates to the out-of-plane conjugation, whereas the HOMO-1 (e.g., the $6 \mathrm{~b}_{\mathrm{g}}$ level of C_{8}) is of σ-symmetry and arises from the in-plane conjugation. In both cases, the leading bonding overlaps can be associated to the shortest $\mathrm{C} \equiv \mathrm{C}$ bonds. In addition, the HOMO is clearly of antibonding character in the regions corresponding to the largest $\mathrm{C}-\mathrm{C}$ bonds. From inspection of the results obtained for C_{8} and its cation, $\mathrm{C}_{8}{ }^{+}$, it appears that the ionized level is the HOMO-1. Furthermore, the HOMO undergoes very strong relaxation effects upon the ionization process, since it clearly ends up in a nonbonding pattern in the ionized cluster. Thus, ionization yields a net decrease of the bonding character of the shortest $\mathrm{C} \equiv \mathrm{C}$ bonds as well as a decrease of the antibonding character associated with the largest $\mathrm{C}-\mathrm{C}$ bonds, which explains the evolution of the structure toward a more regular form.

Figure 2. (a) Energy diagram for the eight outermost occupied orbitals accounting for the in-plane and out-of-plane π-electron conjugations of the C_{8} and $\mathrm{C}_{8}{ }^{+}$cyclic clusters. Schematic drawings of (b) the highest occupied molecular orbital (HOMO) and (c) the HOMO-1 orbital of these clusters.

On the other hand, the outermost electrons of cumulenic rings (e.g., C_{6}, Figure 3) fall in a doubly degenerate set of out-ofplane π-orbitals, which provides a fully symmetric and regular electronic distribution. Ionization of one of the frontier orbitals yields thus some asymmetrization of the electron density and hence, a distortion of the structure toward a more alternating pattern. Therefore, in this case, the distortions of cumulenic structures due to ionization can be regarded as the outcome of a Jahn-Teller effect, ${ }^{43}$ in order to release electronic degeneracies.

Interestingly, similar trends hold also, but to a lesser extent, for the cyclic $\mathrm{C}_{4 n+1}$ and $\mathrm{C}_{4 n+3}$ species, which, from their ionization behavior, appear to follow the trends observed for the cumulenic $\mathrm{C}_{4 n+2}$ and polyynic $\mathrm{C}_{4 n}$ rings, respectively. Starting from an essentially nonalternating situation for the $\mathrm{C}_{4 n+1}$ rings, ionization can be overall shown to yield a slight, but significant, increase of the bond length alternations, whereas for the $\mathrm{C}_{4 n+3}$ rings, rather strongly alternating structures in the neutral state are found to become more regular in their ionized form. At this stage, it should be remarked that Hutter et al., ${ }^{2}$ from their DFT calculations using the local spin density exchange-correlation functional of Vosko, Wilk and Nusair ${ }^{44}$ combined with the gradient functional of the Becke-Perdew model ${ }^{45,46}$ and a triple- ζ basis augmented with a d-type polarization function, ${ }^{47}$ simply reported that neutral carbon clusters with an odd-number of atoms have a ring polyynic structure with clearly alternating bond lengths. As emphasized by Hutter et al., ${ }^{2}$ it is quite likely that the local spin density exchange approximation represents a too limited functional for a consistent description of strongly correlated systems.
(a)

Figure 3. (a) Energy diagram for the six outermost occupied orbitals accounting for the in-plane and out-of-plane π-electron conjugations of the C_{6} and $\mathrm{C}_{6}{ }^{+}$cyclic clusters. (b) Schematic drawings of the highest occupied molecular orbitals (HOMO) and the HOMO-1 orbital of these clusters.

Since one of the most obvious tools for tracing these contrasted structural variations would be rotational spectroscopy, ${ }^{48}$ it seemed interesting to pursue these comparisons for the moments of inertia obtained from diagonalization of the inertia tensor, i.e., $I_{q q}=\sum_{j} m_{J} q_{J}{ }^{2}$ with $q=x, y, z$. By definition, these represent very sensitive markers of even the weakest alterations of the molecular structure. Here again, rather clear and contrasted behaviors emerge (under the influence of ionization) in particular for the systems with an even number of atoms, depending whether the C_{n} rings are prominently of polyynic or cumulenic character. From inspection of the results displayed in Table 5, the cumulenic $\mathrm{C}_{4 n+2}$ clusters are found to be oblate symmetric rotors ${ }^{49}$ in their neutral form and to become clearly asymmetric tops upon adiabatic ionization. As before, the same trend holds to a lesser extent for the cumulenic $\mathrm{C}_{4 n+1}$ rings, as in this case ionization is also found to clearly increase the asymmetry of the rotor. In both cases, one may also note a slight but net increase of the main axis component, $I_{z z}$. For the polyynic $\mathrm{C}_{4 n}$ clusters, on the other hand, the rotor remains practically symmetric, despite the lowering of the symmetry point group upon ionization (Table 3). For these species, the only detectable variations are slight decreases of the moments of inertia, which relate to a shrink of the average radius of the ring by about $0.01 \AA$. The trends are not so clear for the polyynic $\mathrm{C}_{4 n+3}$ clusters. Nonetheless and interestingly, these tend to exhibit a more symmetric rotor in their ionized form.
3. Structure Considerations on Linear Clusters. The optimized structures of the linear carbon clusters considered in the present study are described, either in their neutral form

TABLE 5. Total Lengths (Obtained as a Sum of the Bond Lengths, in \AA) and Moments of Inertia ($\mathbf{k g} \mathrm{m}^{2}$) of Cyclic Carbon Clusters in Their Neutral and Ionized Forms

species	total length	moments of inertia		
		$I_{x x}\left(\times 10^{-46}\right)$	$I_{y y}\left(\times 10^{-46}\right)$	$I_{z z}\left(\times 10^{-46}\right)$
Cations with an Even Number of Atoms				
C_{4}	5.818	2.266	6.164	8.430
$\mathrm{C}_{4}{ }^{+}$	5.769	2.855	5.449	8.304
Polyynic Structures				
C_{8}	10.624	22.826	22.826	45.652
$\mathrm{C}_{8}{ }^{+}$	10.567	22.545	22.550	45.095
C_{12}	15.673	74.055	74.055	148.110
$\mathrm{C}_{12}{ }^{+}$	15.617	73.467	73.474	146.942
C_{16}	20.764	175.097	175.097	350.194
$\mathrm{C}_{16}{ }^{+}$	20.669	173.802	173.802	347.604
Cumulenic Structures				
C_{6}	7.991	10.163	10.163	20.357
$\mathrm{C}_{6}{ }^{+}$	7.962	9.604	10.970	20.574
C_{10}	13.011	42.959	42.959	85.917
$\mathrm{C}_{10}{ }^{+}$	12.962	42.708	44.226	86.935
C_{14}	18.077	116.374	116.374	232.748
$\mathrm{C}_{14}{ }^{+}$	18.050	115.153	118.501	233.655
C_{18}	23.180	246.157	246.157	492.212
$\mathrm{C}_{18}{ }^{+}$	23.172	242.622	249.590	492.314
Cations with an Odd Number of Atoms				
"Polyynic" Structures				
C_{7}	9.447	12.670	19.068	31.738
$\mathrm{C}_{7}{ }^{+}$	9.255	14.975	16.641	31.616
C_{11}	13.031	56.102	58.179	114.281
$\mathrm{C}_{11}{ }^{+}$	14.275	56.636	57.853	114.488
C_{15}	19.475	141.430	144.294	285.724
$\mathrm{C}_{15}{ }^{+}$	19.343	143.472	144.726	287.197
"Cumulenic" Structures				
C_{5}	7.169	4.938	9.262	12.684
$\mathrm{C}_{5}{ }^{+}$	7.098	3.298	10.837	14.135
C_{9}	11.849	31.549	31.987	63.090
$\mathrm{C}_{9}{ }^{+}$	11.770	32.010	32.179	64.189
C_{13}	16.846	93.597	94.301	187.899
$\mathrm{C}_{13}{ }^{+}$	16.849	93.807	94.391	188.199

${ }^{a}$ The moments of inertia of the structures optimized at the B3LYP/ cc-pVDZ level. Atomic units have been converted into SI units, using $[\mathrm{L}]=a_{0}=5.2917 \times 10^{-11} \mathrm{~m}$ and $[\mathrm{M}]=\mathrm{amu}=1.6605 \times 10^{-27} \mathrm{~kg}$.
(singlet states for uneven C_{n} species and triplets for the even ones) or in their doublet and quadruplet ionized states, in terms of the symmetry nonequivalent bond length parameters given in Table 6. As for the cyclic clusters and in order to simplify the comparison between these structures, the cumulenic or polyynic character of the chains has been evaluated from the alternations of bond lengths (Table 7). Despite end chain effects, which enforce some geometrical distortions, the structure of the C_{n} clusters in their neutral form can be regarded as essentially cumulenic. Furthermore, the bond length alternations tend to disappear rather quickly with the size of chains, an observation which, on the grounds of basic polymer quantum chemistry, ${ }^{42}$ seems to indicate that infinitely large linear carbon chains would display metallic-like properties. For the smallest clusters, significant geometrical distortions toward structures with a more pronounced polyynic character can be observed in the ionized clusters. Rather unsurprisingly, the amplitude of these distortions decreases rapidly with the size of chains as well, an observation which reflects again the metallic character of the largest linear chains and their ability to delocalize charge carriers.

From the point of view of the moments of inertia (Table 8), the linear carbon clusters exhibit rather different behaviors depending on whether they are even- or odd-membered. For the C_{n} clusters with an even number of carbon atoms, ionization is always found to yield a slight increase of the total length of

TABLE 6. Geometries for Linear Carbon Cluster Cations at the B3LYP/cc-pVDZ Level (Bond Lengths in A) with the ROHF/6-31G(d) Results by Von Helden et al. ${ }^{b}$ Included for Comparison Purposes

$\mathrm{C}_{4}{ }^{+}$	
${ }^{2}$? $\left(D_{\infty h}\right)$	1.376, 1.268
${ }^{4} \Sigma_{\mathrm{g}}{ }^{-}\left(D_{\infty h}\right)$	1.306, 1.299
${ }^{3} \Sigma_{\mathrm{g}}^{-}-\left(D_{\infty h}\right)$ neutral ${ }^{a}$	1.319, 1.299
$\mathrm{C}_{5}{ }^{+}$	
${ }^{2} \Sigma^{+}\left(C_{\infty}\right.$)	1.236, 1.329, 1.261, 1.336
${ }^{4}$? $\left(D_{\infty h}\right)$	1.253, 1.303
${ }^{1} \Sigma_{\mathrm{g}}+\left(D_{\infty h}\right)$ neutral ${ }^{a}$	1.296, 1.291
$\mathrm{C}_{6}{ }^{+}$	
${ }^{2}$? $\left(D_{\infty h}\right)$	1.347, 1.268, 1.315
${ }^{4} \Sigma^{-}\left(C_{\infty \nu}\right)$	1.257, 1.306, 1.285, 1.286, 1.336
${ }^{2} \Pi\left(D_{\infty h}\right) \mathrm{ROHF}^{b}$	1.327, 1.236, 1.321
${ }^{4} \Sigma^{-}\left(D_{\infty h}\right) \mathrm{ROHF}^{\text {b }}$	$1.353,1.212,1.372,1.223,1.313$
${ }^{3} \Sigma_{\mathrm{g}}{ }^{-}\left(D_{\infty}\right)$ neutral a	1.309, 1.296, 1.283
$\mathrm{C}_{7}{ }^{+}$	
${ }^{2} \Sigma^{-}\left(C_{\infty \nu v}\right)$	1.326, 1.270, 1.311, 1.251, 1.334, 1.234
${ }^{4}$? $\left(D_{\infty h}\right)$	$1.244,1.318,1.277$
${ }^{2} \Sigma^{+}\left(C_{\infty v}\right) \mathrm{ROHF}^{b}$	$1.313,1.233,1.329,1.207,1.361,1.191$
${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\left(D_{\infty}\right)$ neutral ${ }^{a}$	1.296, 1.295, 1.281
$\mathrm{C}_{8}{ }^{+}$	
${ }^{2}$? $\left(D_{\infty h}\right)$	1.334, 1.273, 1.309, 1.263
${ }^{4} \Sigma_{\mathrm{g}}{ }^{+}\left(D_{\infty h}\right)$	1.280, 1.230, 1.279, 1.289
${ }^{2} \Pi\left(D_{\infty h}\right) \mathrm{ROHF}^{b}$	1.313, 1.241, 1.316, 1.227
${ }^{4} \Sigma^{-}\left(C_{\infty}\right) \mathrm{ROHF}^{b}$	1.362, 1.206, 1.344, 1.215,1.320, 1.238, 1.307
${ }^{3} \Sigma_{\mathrm{g}}{ }^{-}\left(D_{\infty h}\right)$ neutral a	$1.305,1.297,1.282,1.289$
$\mathrm{C}_{9}{ }^{+}$	
${ }^{2}$? $\left(D_{\infty h}\right)$	1.324, 1.285, 1.290, 1.284
${ }^{4}$? $\left(D_{\infty h}\right)$	1.344, 1.282, 1.298, 1.286
${ }^{2} \Sigma^{+}\left(C_{\infty \nu}\right) \mathrm{ROHF}^{b}$	$\begin{aligned} & 1.308,1.237,1.321,1.214,1.347,1.200,1.370 \text {, } \\ & 1.188 \end{aligned}$
${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\left(D_{\infty h}\right)$ neutral a	$1.295,1.298,1.280,1.285$
$\mathrm{C}_{10}+$	
${ }^{2}$? $\left(D_{\infty h}\right)$	1.326, 1.276, 1.304, 1.264, 1.308
${ }^{4}$? $\left(C_{\infty \nu}\right)$	$\begin{aligned} & 1.322,1.285,1.290,1.283,1.282,1.296,1.267 \text {, } \\ & 1.322,1.244 \end{aligned}$
${ }^{2} \Pi\left(D_{\infty h}\right) \mathrm{ROHF}^{b}$	$1.313,1.241,1.316,1.227,1.320$
${ }^{4} \Sigma^{-}\left(C_{\infty \nu}\right) \mathrm{ROHF}^{b}$	$\begin{aligned} & 1.367,1.202,1.355,1.207,1.338,1.218,1.315 \text {, } \\ & 1.240,1.304 \end{aligned}$
${ }^{3} ?\left(D_{\infty h}\right)$ neutral	$1.300,1.300,1.281,1.290,1.282$
$\mathrm{C}_{11}{ }^{+}$	
${ }^{2}$? $\left(D_{\infty h}\right)$	1.319, 1.286, 1.290, 1.282, 1.286
${ }^{4}$? $\left(D_{\infty h}\right)$	1.334, 1.283, 1.297, 1.281, 1.290
${ }^{2} \Sigma^{+}\left(C_{\infty \nu}\right) \mathrm{ROHF}^{b}$	```1.305, 1.240, 1.316, 1.217,1.340, 1.205, 1.359, 1.197, 1.375, 1.187```
${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\left(D_{\infty h}\right)$ neutral ${ }^{a}$	$1.299,1.295,1.287,1.279,1.283$
$\mathrm{C}_{12}{ }^{+}$	
${ }^{2}$? $\left(D_{\infty h}\right)$	$1.321,1.279,1.301,1.266,1.306,1.264$
${ }^{4}$? $\left(C_{\infty \nu v}\right)$	$\begin{aligned} & 1.328,1.286,1.289,1.281,1.286,1.289,1.277 \text {, } \\ & 1.302,1.262,1.327,1.241 \end{aligned}$
${ }^{3} ?\left(D_{\infty h}\right)$ neutral	$1.298,1.301,1.280,1.291,1.282,1.289$
$\mathrm{C}_{13}{ }^{+}$	
${ }^{2} ?\left(D_{\infty h}\right)$	1.316, 1.287, 1.289, 1.281, 1.288, 1.284
${ }^{4}$? $\left(D_{\infty h}\right)$	1.327, 1.284, 1.296, 1.279, 1.292, 1.285
${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\left(D_{\infty h}\right)$ neutral	$1.272,1.291,1.262,1.279,1.268,1.273$
$\mathrm{C}_{14}{ }^{+}$	
${ }^{2} ?\left(D_{\infty h}\right)$	1.317, 1.281, 1.298, 1.268, 1.304, 1.265, 1.306
${ }^{4}$? ($D_{\infty h}$)	$1.319,1.296,1.278,1.301,1.266,1.312,1.261$
$\mathrm{C}_{15}{ }^{+}$	
${ }^{2}$? $\left(D_{\infty h}\right)$	1.313, 1.288, 1.288, 1.281, 1.288, 1.283, 1.286
${ }^{4}$? $\left(D_{\infty h}\right)$	$1.322,1.285,1.295,1.278,1.294,1.281,1.288$

${ }^{a}$ Martin, J. M. L.; El-Yazal, J.; François, J.-P. Chem. Phys. Lett. 1995, 242, 570; Chem. Phys. Lett. 1996, 252, 9. ${ }^{b}$ von Helden, G.; Gotts, N. G.; Palke, W. E.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1994, 138, 33. (?) indicates that no definite assignment of the electronic state was possible from the GAUSSIAN94 outputs.
chains. In most cases, this induces in turn an increase of the moments of inertia, with the only exception of C_{8} and C_{12}. Somewhat too simply, this relates to the fact that, in evennumbered chains, the central bond becomes markedly larger,

TABLE 7. Successive Bond Length Alternations in Linear Carbon Clusters (in A) with the ROHF/6-31G(d) Results by Von Helden et al. ${ }^{a}$ Included for Comparison Purposes

TABLE 8. Total Lengths (in \AA) and Moments of Inertia (in $\mathbf{k g ~ m}^{2}$) of Linear $\mathrm{C}_{n}{ }^{+}$Cations ${ }^{a}$
\(\left.\begin{array}{lcc}\hline \& \& moments of inertia

species \& total length (Å) \& I_{x x}=0

\& Cations with an Even Number of Atoms

I_{z z}\left(\times 10^{-46}\right)\end{array}\right]\)| 17.112 |
| :--- |
| C_{4} |

${ }^{a}$ The moments of inertia of the structures optimized at the B3LYP/ cc-pVDZ level. Atomic units have been converted into SI units using $[\mathrm{L}]=a_{0}=5.2917 \times 10^{-11} \mathrm{~m}$ and $[\mathrm{M}]=\mathrm{amu}=1.6605 \times 10^{-27} \mathrm{~kg}$.
pushing the two extremities of the chains further apart. On the contrary, for the smallest odd-membered clusters, i.e., C_{5} and C_{7}, although ionization yields net distortions toward a polyynic pattern, only a tiny decrease of the moments of inertia can be noted. This is the result of the noncentrosymmetric character of these chains and of a very slight decrease of their total length.

For the largest odd-membered chains (C_{9} to C_{13}), ionization induces again a net increase of the length of chains and correspondingly of their moments of inertia, this time as the outcome of a lowering of the bond-order of the two terminal bonds with the rest of the chain remaining essentially cumulenic.
4. Energy Considerations. The results obtained from the ion chromatography ${ }^{21,50}$ experiments by von Helden et al. ${ }^{22}$ provided evidence for a mixture of linear and cyclic isomers of the ionized $\mathrm{C}_{n}{ }^{+}(n=7-10)$ clusters that have been generated via laser vaporization of graphite. In the same experimental conditions, the $\mathrm{C}_{5}{ }^{+}$and $\mathrm{C}_{6}{ }^{+}$ions were experimentally found to be purely linear, whereas the cations ranging from $\mathrm{C}_{11}{ }^{+}$to $\mathrm{C}_{20}{ }^{+}$appeared to be lying exclusively in their monocyclic form. As for the neutral species, this behavior arises as the natural outcome of a balance between the formation of an additional $\mathrm{C}-\mathrm{C}$ bond and strains in cyclic structures based on sp-hybridized carbon atoms. These experimental findings are nicely confirmed by our calculations, since the relative energies (Table 9) show a crossing point between cyclic and linear $\mathrm{C}_{n}{ }^{+}$species at a number of carbon atoms between 6 and 7 , either with the DFT or $\operatorname{CCSD}(\mathrm{T})$ methods. At this stage, it is worth noting that the ROHF method fails in predicting the correct energy order for the $\mathrm{C}_{4}{ }^{+}, \mathrm{C}_{7}{ }^{+}$, and $\mathrm{C}_{9}{ }^{+}$species, the doublet linear form being incorrectly predicted to be the most stable one (Table 9). Overall, the B3LYP, B3PW91, and $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVDZ}$ theoretical levels predict the same energy sequence. One exception is $\mathrm{C}_{4}{ }^{+}$, for which the B3LYP level gives the linear doublet species as the most stable form, whereas the cyclic doublet isomer appears to be the most stable species either with the B3PW91 and $\operatorname{CCSD}(\mathrm{T})$ approaches. For $\mathrm{C}_{5}{ }^{+}$and $\mathrm{C}_{6}{ }^{+}$, all methods predict the linear doublet as the most stable isomer. From $\mathrm{C}_{7}{ }^{+}$to $\mathrm{C}_{19}{ }^{+}$, the cyclic isomers in their doublet states are clearly favored energetically.

Although they provide the same energy order, the B3LYP, B3PW91, and $\operatorname{CCSD}(T)$ results exhibit on the other hand some substantial variations, by several $\mathrm{kcal} / \mathrm{mol}$, in the isomerization energies. The isomerization energies obtained via the B3LYP approach deviate in average from the $\operatorname{CCSD}(\mathrm{T})$ results by 6.4 $\mathrm{kcal} / \mathrm{mol}$, whereas the B3PW91 functional yields an average deviation of $3.6 \mathrm{kcal} / \mathrm{mol}$ only. However, we found that these deviations are overall similar in magnitude to the influence on the isomerization energies of the zero-point vibrational energies and entropy effects. From preliminary investigations carried out using the RRHO (rigid rotor harmonic oscillator) approximation, ${ }^{48}$ it seems that the latter contributions should destabilize the cyclic forms by a few $\mathrm{kcal} / \mathrm{mol}$ compared to the linear forms, at ordinary temperatures.

From inspection of Table 9, the values of the so-called T_{1} diagnostic ${ }^{21,51}$ for the $\operatorname{CCSD}(\mathrm{T})$ method appear to be always larger than 0.02 , reflecting the importance of nondynamical correlation and near-degeneracy effects in the ground state. It should be noted that the T_{1} values are always lower than the critical value of $0.08,{ }^{52}$ under which the description of the ground state with a single determinant wave function is usually valid.

Compared to the results of ROHF calculations, the available DFT and $\operatorname{CCSD}(\mathrm{T})$ data obtained for the doublet states provide (Table 10) a much better agreement with the available experimental isomerization energies from the cyclic to the linear species $\mathrm{C}_{n}{ }^{+}$(with $n=7-10$). In regards to the fairly good agreement obtained with these experimental data, we believe that we have consistently described the structure and energetics of the $\mathrm{C}_{n}{ }^{+}$species.
5. Vibrational Spectra. The detailed data required to simulate and/or to interpret the infrared spectra (vibrational frequencies
and IR activities) of all the species considered in the present study are given in Table 11. These data have been obtained at the B3LYP level, which, as it has been shown previously, provides results comparable in quality to those of $\operatorname{CCSD}(\mathrm{T})$ calculations.

From inspection of Table 11 and an analysis of the most intense lines, it is clear that the linear carbon cations have generally a much larger IR activity than the corresponding cyclic ones. Specifically, the most intense lines of the linear cluster cations provide an IR activity between 632 and $9003 \mathrm{~km} / \mathrm{mol}$ (for $\mathrm{C}_{4}{ }^{+}$and $\mathrm{C}_{14}{ }^{+}$, respectively). In comparison, the most intense lines of cyclic cation clusters have an IR activity ranging typically from $100\left(\mathrm{C}_{10}{ }^{+}\right)$to $908\left(\mathrm{C}_{17}{ }^{+}\right) \mathrm{km} / \mathrm{mol}$ only. A very weak activity, which does not exceed $21 \mathrm{~km} / \mathrm{mol}$, is found for the cyclic $\mathrm{C}_{15}{ }^{+}$cluster. Overall, from the intensity of the most intense lines, the IR activity of linear cations appears from Figure 4 to grow rather regularly with the size of chains, despite a rather normal oscillation with a $2 n$ periodicity. On the other hand, the size dependence of the IR activity of the cyclic species does not increase at all with the size of rings, as should be expected for a size-intensive quantity. Quite interestingly, the dotted curve displayed in Figure 4 for these species seems roughly to reflect a $4 n$ periodicity, the polyynic $\mathrm{C}_{4 n}{ }^{+}$and cumulenic $\mathrm{C}_{4 n+2}{ }^{+}$cases coinciding roughly with a rise or drop of the IR activity.

From the point of view of constraints on molecular motions and the distribution of electric charges, the cyclic clusters, the smaller ones in particular, are netly disfavored. As illustrated in Figure 5, linear cations are characterized by a rather net localization of positive charges at the middle of the chain and of negative charges at the extremities (for an illustration of endchain effects in large one-dimensional systems, see also ref 53), whereas cyclic cations naturally afford a complete delocalization of the positive charge due to ionization on the whole circumference. End chain effects in linear $\mathrm{C}_{n}{ }^{+}$clusters thus result in particularly large and size-extensive quadrupole moments, which explains the much stronger IR activity associated with the asymmetric vibrational normal modes. Altogether, for the cyclic species, our observations suggest that polyynic, i.e., antiaromatic, structures favor a higher IR activity than cumulenic, i.e., aromatic, clusters; the smaller the band gap, the stronger the response of the system toward a perturbation, the response being in this case the change (i.e., derivative) of the dipole moment upon a distortion of the geometrical structure along the vibrational normal modes. Compared with the cumulenic, i.e., regular systems, rings of polyynic character tend to present a higher alternation of electric charges on atoms, which favors also a larger IR activity.

The smaller cyclic species $\left(\mathrm{C}_{4}{ }^{+}, \mathrm{C}_{5}{ }^{+}\right)$can be discriminated from the linear ones from a few intense lines with rather large intensities at low frequencies (e.g., 172, $325 \mathrm{~cm}^{-1}$). When considering lines with an IR activity higher than $0.6 \mathrm{~km} / \mathrm{mol}$, it is also found that the linear species are in general marked by a larger spreading of vibrational frequencies, from 100 to 2200 cm^{-1}, than the cyclic clusters, the vibrational frequencies of which are essentially confined between 350 and $2250 \mathrm{~cm}^{-1}$. This again can be related to the more strained character of cyclic structures.

In the literature, a large number of studies have been published concerning the interpretation of the IR spectrum of carbon vapor and of carbon species trapped in solid argon or krypton matrixes [refs 3, 5, 6, 18, 54, and 55 and references therein]. Vala and co-workers ${ }^{26}$ assigned a band at $2053 \mathrm{~cm}^{-1}$ (Ar matrix) to cyclic $\mathrm{C}_{5}{ }^{+}$. However, Szczepanski et al. ${ }^{56}$ proved

TABLE 9. Relative Energies (kcal/mol) of Different Structures of $\mathrm{C}_{n}{ }^{+}(n=4-19)$ at Different Theoretical Levels (cc-pVDZ Basis Set)

TABLE 10. Comparison of the Relative Energies, $\Delta E=E_{\text {lin }}$ - $E_{\text {cyc }}(\mathrm{kcal} / \mathrm{mol})$ of Carbon Clusters at Different Theoretical Levels with Some Experimental Data

| species exptl a | ROHF a | CI-SD+QQ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

[^1]more recently that the $2053 \mathrm{~cm}^{-1}$ feature belongs to the $\mathrm{C}_{3} \cdots$ $\mathrm{H}_{2} \mathrm{O}$ complex.

In the IR spectrum of carbon vapor, trapped in an Ar matrix, a number of bands still remain to be assigned: 1346 (weak), 1477 (weak), 1489 (stronger), 1578 (broad), 1747 (weak), 2036 (shoulder of $2041 \mathrm{~cm}^{-1}$ (C3(lin))), 2180-2214 (very broad), 2218-2227 (very broad), 2247-2251 (broad) cm ${ }^{-1}$.

It should be noticed that the computed harmonic frequencies differ from the experimental ones due to the following effects: anharmonicities, interactions of the clusters with the Ar matrix, and spectral shifts due to the matrix. In previous papers, ${ }^{18}$ it has been shown that a linear relationship can be established between the v (observed, matrix) and ω (calculated, B3LYP/ cc-pVDZ) frequencies of linear C_{n} species. If we use such a relationship, it is found that, within the experimental spectrum, the weak band at $1346 \mathrm{~cm}^{-1}$ can be due to $\mathrm{C}_{4}{ }^{+}$(doublet, linear) and the bands at 1489 and $1578 \mathrm{~cm}^{-1}$ to $\mathrm{C}_{13}{ }^{+}$(linear, doublet, quartet). For the line at $2036 \mathrm{~cm}^{-1}$, there are many candidates: $\mathrm{C}_{8}{ }^{+}, \mathrm{C}_{10}{ }^{+}, \mathrm{C}_{12}{ }^{+}, \mathrm{C}_{14}{ }^{+}$(all doublets); $\mathrm{C}_{6}{ }^{+}, \mathrm{C}_{10}{ }^{+}, \mathrm{C}_{11}{ }^{+}, \mathrm{C}_{12}{ }^{+}, \mathrm{C}_{15}{ }^{+}$ (all quartets); also cyclic $\mathrm{C}_{11}{ }^{+}$(doublet, quartet), $\mathrm{C}_{15}{ }^{+}$(quartet) (see Table 11). Potential candidates for the $2180-2217 \mathrm{~cm}^{-1}$ region are linear $\mathrm{C}_{5}{ }^{+}$(doublet), $\mathrm{C}_{7}{ }^{+}$(doublet), $\mathrm{C}_{8}{ }^{+}$(quartet); cyclic $\mathrm{C}_{14}{ }^{+}$(doublet), $\mathrm{C}_{17}{ }^{+}$(doublet). For the $2218-2227 \mathrm{~cm}^{-1}$ region, linear $\mathrm{C}_{8}{ }^{+}$(quartet) is the candidate. No linear $\mathrm{C}_{n}{ }^{+}$ species studied in the present paper appear to absorb in the $2247-2253 \mathrm{~cm}^{-1}$ region.

Clearly, considering the complexity of the IR spectrum in certain regions and the fact that many species absorb in those regions, no definitive assignments of bands can be made. However, the results of our vibrational analysis may help the interpretation of future experimental data.
6. Adiabatic Ionization Potentials. As a direct byproduct of the present study, we provide in Table 12 the adiabatic ionization potential (AIP) of the carbon clusters considered in this study, which have been evaluated from the energies obtained from the B3LYP/cc-pVDZ and $\operatorname{CCSD}(\mathrm{T}) /$ cc-pVDZ calculations. The B3LYP values have been furthermore corrected for zeropoint vibrational energies (to be found in Table 11). As can be seen from this table, the latter have a rather marginal effect on the ionization energies, in general smaller than 0.1 eV . In sharp contrast with the isomerization energies, our B3LYP and $\operatorname{CCSD}(\mathrm{T})$ calculations provide very similar values of ionization energies. These are found furthermore to sustain a very satisfactory comparison with previous theoretical results obtained for $\mathrm{C}_{4}, \mathrm{C}_{5}$, and $\mathrm{C}_{6} .{ }^{17}$ Comparison with experiment, ${ }^{57-59}$ on the other hand, is only successful with one value reported as adiabatic for $\mathrm{C}_{6},{ }^{59}$ leaving us with the idea that the ionization
potentials measured ${ }^{57,58}$ for C_{4} and C_{5}, being too small by 1.62.0 eV on the theoretical side $[\operatorname{CCD}(\mathrm{T})]$, are essentially vertical in nature.

Either for the linear or cyclic clusters, the adiabatic ionization energies appear globally to decrease with increasing system size (Figure 6), a fact which naturally relates to the construction ${ }^{42}$ of the band structure of a stereoregular polymer chain. As for the IR activity, the ionization potentials of linear C_{n} clusters exhibit a deviation to a regular size dependence with a $2 n$ periodicity, whereas the cyclic species present again the characteristic $4 n$ periodicity. Quite naturally, in view of the stabilizing resonant effects present in cumulenic species, maxima in the size dependence of the AIP are encountered for rings with a number of carbon atoms equal to $4 n+2$.

From inspection of Figure 6, the $\mathrm{C}_{4 n+2}$ and to a lesser extent the $\mathrm{C}_{4 n+1}$ cyclic clusters can be generally characterized by a rather net increase of the AIP, whereas a net reduction is observed with the $\mathrm{C}_{4 n}$ and $\mathrm{C}_{4 n+3}$ cyclic species. This ultimate finding beautifully justifies our description of the $\mathrm{C}_{4 n+1}$ and $\mathrm{C}_{4 n+2}$ rings, on the one hand, and of the $\mathrm{C}_{4 n}$ and $\mathrm{C}_{4 n+3}$ rings on the other hand, as cumulenic and polyynic systems, respectively. Since the influence of the cyclic closure on the electronic and molecular structures will progressively shade off with increasing system size, it is quite clear, however, that this classification should break down for much larger systems.

Quite obviously from Figure 6, the size dependence of the AIP of the largest clusters considered in this study is still far from converging to some asymptotic value, as should be normally expected for a size-intensive property. ${ }^{60}$ For very large (i.e., infinite) C_{n} clusters, the AIP's of rings and chains should furthermore converge to the same limit, which, regardless of dynamic electronic relaxation and correlation effects, should be close to 0 eV , in view of the cumulenic character of the largest linear chains considered here.

Nonetheless and as in many instances, ${ }^{61}$ strong failures of Koopmans' theorem ${ }^{62}$ must certainly occur, ${ }^{63}$ in particular when dealing with the cyclic polyynic species (see, e.g., Figure 2 and section 2). These most often take the form of a reversal of the outermost ionization energies compared to the HF ordering. For instance, for the cyclic C_{8} cluster, the ionized $6 \mathrm{~b}_{\mathrm{g}}{ }^{-1}$ state is more stable than the $2 \mathrm{~b}_{\mathrm{u}}{ }^{-1}$ state. This relates ${ }^{61}$ to the presence of a low-lying virtual orbital of π-type (the LUMO of the cyclic C_{8} cluster has, e.g., a $3 \mathrm{~b}_{\mathrm{u}}$ label) and to many-body effects (in particular, pair relaxation, ${ }^{64}$ i.e., the increase of electron correlation due to relaxation and electron excitations into an extra unoccupied orbital). At this stage, it must thus be stressed that the ionization spectra of large carbon clusters still remain a very challenging question, considering also the major breakdown of the orbital picture of ionization ${ }^{63,65}$ that can be expected for so strongly correlated compounds.

Conclusions

In the present study, structural and vibrational properties of large cyclic and linear carbon clusters $\mathrm{C}_{n}{ }^{+}(n=4-19)$ have been investigated in detail using density functional theory (DFT) and coupled cluster (CC) calculations. Two functionals, i.e., B3LYP (Becke three-parameter Lee-Yang-Parr) and B3PW91 (Becke three-parameter Perdew-Wang), have been considered in conjunction with a correlation-consistent polarized double- ζ (cc-pVDZ) basis in the DFT calculations. The geometries and frequencies obtained with both schemes are virtually the same and compare rather nicely with the results of coupled cluster calculations in the $\operatorname{CCSD}(\mathrm{T})$ approximation. Isomerization energies, on the other hand, may show some substantial

TABLE 11. Harmonic Frequencies (cm^{-1}) and IR Intensities ($\mathbf{k m} / \mathrm{mol}$) of $\mathrm{C}_{n}{ }^{+}$Cations at the B3LYP/cc-pVDZ Level ${ }^{a}$

$\begin{aligned} & \mathrm{C}_{4}{ }^{+} \\ & D_{2 h} \text { cyclic doublet } \\ & \mathrm{ZPE}=6.21 \end{aligned}$	198($\left.\mathrm{b}_{1 \mathrm{u}}, 797\right), 339\left(\mathrm{~b}_{3 \mathrm{u}}, 12\right), 620\left(\mathrm{~b}_{2 \mathrm{u}}, 64\right)$
$\mathrm{D}_{2 h}$ cyclic quartet ZPE $=8.62$	574(b3u, 1), 846($\left.\mathrm{b}_{2 \mathrm{u}}, 24\right), 1394\left(\mathrm{~b}_{1 \mathrm{u}}, 46\right)$
$\mathrm{D}_{\infty h}$ linear doublet ZPE $=6.19$	$129\left(\tau_{\mathrm{u}}, 12\right), 149\left(\pi_{\mathrm{u}}, 6\right), \mathbf{1 3 3 0}\left(\boldsymbol{\sigma}_{\mathrm{u}}, \mathbf{6 3 2}\right)$
$\mathrm{D}_{\infty h} \text { linear quartet }$ $\mathrm{ZPE}=7.53$	1914($\sigma_{\mathrm{u}}, 5495$)
$\begin{aligned} & \mathrm{C}_{5}{ }^{+} \\ & C_{s} \text { cyclic doublet } \\ & \mathrm{ZPE}=9.52 \end{aligned}$	$\begin{aligned} & \text { 325(} \left.a^{\prime}, 343\right), 349\left(a^{\prime \prime}, 1\right), 582\left(a^{\prime}, 1\right), 606\left(a^{\prime}, 2\right), 831\left(a^{\prime}, 12\right), \\ & 1254\left(a^{\prime}, 3\right), 1446\left(a^{\prime}, 482\right), 1670\left(a^{\prime}, 19\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=12.12 \end{aligned}$	303($\left.\mathbf{b}_{2}, \mathbf{1 4 0}\right), 396\left(\mathrm{~b}_{2}, 29\right), 1673\left(\mathrm{a}_{1}, 24\right)$
$\mathrm{C}_{\infty \nu}$ linear doublet $Z P E=10.44$	$\begin{aligned} & 270(\pi, 2), 595(\pi, 2), 793(\sigma, 23), 1466(\sigma, 152), 2110(\sigma, 3), \\ & \mathbf{2 2 4 9}(\boldsymbol{\sigma}, \mathbf{1 8 0 2}) \end{aligned}$
$\mathrm{D}_{\infty h} \text { linear quartet }$ $\mathrm{ZPE}=12.30$	153(?, 4), 158(?, 5), 615(?, 6), 1604($\left.\sigma_{\mathrm{u}}, 7\right)$, 1964($\left.\boldsymbol{\sigma}_{\mathrm{u}}, \mathbf{8 8 1}\right)$
$\begin{aligned} & \mathrm{C}_{6}{ }^{+} \\ & C_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=14.80 \end{aligned}$	$\begin{aligned} & 364\left(\mathrm{~b}_{1}, 3\right), 476\left(\mathrm{~b}_{1}, 1\right), 563\left(\mathrm{a}_{1}, 29\right), 1236\left(\mathrm{a}_{1}, 2\right), 1561\left(\mathrm{~b}_{2}, 35\right), \\ & 1778\left(\mathrm{a}_{1}, 50\right), \mathbf{2 0 7 6}\left(\mathbf{b}_{2}, \mathbf{6 0 0}\right) \end{aligned}$
$\mathrm{C}_{2 v} \text { cyclic quartet }$ $\mathrm{ZPE}=14.98$	$\begin{aligned} & \text { 398(} \left.\mathbf{b}_{2}, \mathbf{3 6}\right), 416\left(a_{1}, 32\right), 948\left(b_{2}, 29\right), 955\left(a_{1}, 27\right), \\ & 1655\left(a_{1}, 3\right), 1657\left(b_{2}, 3\right) \end{aligned}$
$\mathrm{D}_{\infty h}$ linear doublet ZPE $=17.61$	$\begin{aligned} & 91(?, 6), 99(?, 4), 362(?, 3), 397(?, 1), 1171\left(\sigma_{\mathrm{u}}, 448\right), \\ & \mathbf{2 0 6 8}\left(\boldsymbol{\sigma}_{\mathbf{u}}, \mathbf{1 2 2 5}\right) \end{aligned}$
$\mathrm{C}_{\infty \nu}$ linear quartet $\mathrm{ZPE}=14.74$	$\begin{aligned} & 97(\pi, 1), 211(\pi, 8), 426(\pi, 1), 673(\sigma, 12), 1243(\sigma, 138), \\ & 1769(\sigma, 127), 1975(\sigma, 305), \mathbf{2 1 3 1}(\sigma, \mathbf{3 8 4}) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{7^{+}} \\ & \boldsymbol{C}_{s} \text { cyclic doublet } \\ & \mathrm{ZPE}=16.63 \end{aligned}$	$\begin{aligned} & 368\left(a^{\prime \prime}, 15\right), 463\left(a^{\prime}, 31\right), 557\left(a^{\prime}, 17\right), 1241\left(a^{\prime}, 8\right), 1242\left(a^{\prime}, 10\right), \\ & 1527\left(a^{\prime}, 14\right), 1618\left(a^{\prime}, 32\right), 1760\left(\mathbf{a}^{\prime}, 145\right), 1775\left(a^{\prime}, 138\right) \end{aligned}$
$\mathrm{C}_{2 v}$ cyclic quartet $\mathrm{ZPE}=18.48$	$\begin{aligned} & 139\left(\mathrm{~b}_{1}, 3\right), 391\left(\mathrm{~b}_{2}, 27\right), 432\left(\mathrm{~b}_{1}, 1\right), 960\left(\mathrm{a}_{1}, 4\right), 1141\left(\mathbf{b}_{2}, 72\right), \\ & 124\left(\mathrm{~b}_{2}, 4\right), 1365\left(\mathrm{~b}_{2}, 1\right), 1717\left(\mathrm{a}_{1}, 2\right), 1973\left(\mathrm{a}_{1}, 8\right) \end{aligned}$
$\mathrm{C}_{\infty \nu \nu}$ linear doublet $\mathrm{ZPE}=19.39$	$\begin{aligned} & 178(\pi, 3), 286(\pi, 1), 584(\sigma, 13), 669(\pi, 3), 1109(\sigma, 34), \\ & 1578(\sigma, 152), 2083(\sigma, 919), 2182(\sigma, 835), \mathbf{2 2 4 4}(\sigma, 2189) \end{aligned}$
$\mathrm{D}_{\infty h} \text { linear quartet }$ $\mathrm{ZPE}=18.92$	$\begin{aligned} & 83(?, 2), 87(?, 3), 536(?, 1), 673(?, 5), 1129\left(\sigma_{\mathrm{u}}, 2\right), \\ & \mathbf{1 8 8 9}\left(\boldsymbol{\sigma}_{\mathrm{u}}, \mathbf{1 8 8 4}\right), 2075\left(\sigma_{\mathrm{u}}, 38\right) \end{aligned}$
$\mathrm{C}_{8}{ }^{+}$ C_{s} cyclic doublet $\mathrm{ZPE}=20.74$	$\begin{aligned} & 401\left(\mathrm{a}^{\prime \prime}, 37\right), 529\left(\mathrm{a}^{\prime}, 49\right), 529\left(\mathrm{a}^{\prime}, 49\right), 1131\left(\mathrm{a}^{\prime}, 18\right), 1803\left(\mathrm{a}^{\prime}, 389\right), \\ & \mathbf{1 8 0 3}\left(\mathbf{a}^{\prime}, \mathbf{3 9 6}\right), 1803\left(\mathrm{a}^{\prime}, 32\right) \end{aligned}$
$\mathrm{C}_{2 v}$ cyclic quartet $\mathrm{ZPE}=25.26$	$\begin{aligned} & 348\left(\mathrm{~b}_{1}, 2\right), \mathbf{5 0 9}\left(\mathbf{b}_{2}, \mathbf{1 9}\right), \mathbf{5 0 9}\left(\mathbf{a}_{\mathbf{1}}, \mathbf{1 9}\right), 1523\left(\mathrm{a}_{1}, 18\right), \\ & 1523\left(\mathrm{~b}_{2}, 18\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear doublet } \\ & \mathrm{ZPE}=22.79 \end{aligned}$	$\begin{aligned} & 61(?, 3), 64(?, 2), 223(?, 8), 241(?, 5), 962\left(\sigma_{\mathrm{u}}, 181\right), \\ & 1649\left(\sigma_{\mathrm{u}}, 746\right), \mathbf{2 1 7 1}\left(\boldsymbol{\sigma}_{\mathrm{u}}, \mathbf{2 4 2 0}\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear quartet } \\ & \mathrm{ZPE}=21.55 \end{aligned}$	$\begin{aligned} & 388\left(\pi_{\mathrm{g}}, 14\right), 1009\left(\sigma_{\mathrm{u}}, 112\right), 1361\left(\tau_{\mathrm{u}}, 4942\right), 1894\left(\sigma_{\mathrm{u}}, 1342\right), \\ & \mathbf{2 3 3 7}\left(\boldsymbol{\sigma}_{\mathrm{u}}, \mathbf{1 2 8 3 3}\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{9}{ }^{+} \text {cyclic doublet } \\ & \boldsymbol{C}_{2 v} \text { cycti }=23.26 \end{aligned}$	$34\left(\mathrm{~b}_{2}, 93\right), 124\left(\mathrm{~b}_{2}, 7\right), 405\left(\mathrm{~b}_{1}, 1\right), 562\left(\mathrm{a}_{1}, 62\right), 957\left(\mathrm{~b}_{2}, 221\right), 1136\left(\mathrm{~b}_{2}, 79\right), 1345\left(\mathrm{a}_{1}, 10\right)$, 1800($\mathrm{b}_{2}, 67$), 1955($\left.\mathrm{a}_{1}, 341\right), 2001\left(\mathrm{~b}_{2}, 163\right), 2072\left(\mathrm{a}_{1}, 82\right)$
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=23.14 \end{aligned}$	$\begin{aligned} & 157\left(a_{1}, 1\right), 284\left(b_{2}, 3\right), 351\left(a_{1}, 19\right), 369\left(b_{1}, 4\right), 443\left(b_{2}, 3\right), 1058\left(b_{2}, 1\right), 1171\left(b_{2}, 6\right), \\ & 1370\left(a_{1}, 4\right), 1536\left(b_{2}, 1\right), 1743\left(a_{1}, 6\right), 1789\left(b_{2}, 15\right), 2037\left(a_{1}, 2\right) \end{aligned}$
C_{∞} linear doublet ZPE $=24.24$	44(?, 6), 50(?, 2), 125(?, 20), 207(?, 4), 433(?, 4), 716(?, 10), 876($\sigma, 79), 1575(\sigma, 362)$, 1833($\sigma, 4191)$, 2108($\sigma, 2122$)
$\begin{aligned} & \mathrm{D}_{\propto h} \text { linear quartet } \\ & \mathrm{ZPE}=24.23 \end{aligned}$	$\begin{aligned} & 39(?, 10), 49(?, 2), 104(?, 21), 191(?, 9), 383(?, 7), 421(?, 5), 672(?, 11), 738(?, 1), \\ & 849\left(\sigma_{\mathrm{u}}, 138\right), 1483\left(\sigma_{\mathrm{u}}, 802\right), 1826\left(\sigma_{\mathrm{u}}, 990\right), \mathbf{2 0 1 9}\left(\sigma_{\mathrm{u}}, 1357\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{10}{ }^{+} \\ & \boldsymbol{C}_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=26.42 \end{aligned}$	$\begin{aligned} & 129\left(b_{2}, 43\right), 243\left(b_{2}, 26\right), 316\left(a_{1}, 17\right), 374\left(b_{1}, 6\right), 399\left(a_{1}, 2\right), 473\left(b_{2}, 2\right), 516\left(a_{1}, 15\right), 821\left(a_{1}, 1\right), \\ & 1053\left(b_{2}, 1\right), 1072\left(a_{1}, 2\right), 1460\left(b_{2}, 2\right), 1521\left(b_{2}, 100\right), 1585\left(b_{2}, 9\right), 1908\left(a_{1}, 49\right), 1935\left(b_{2}, 41\right), 2096\left(a_{1}, 92\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=28.11 \end{aligned}$	$\begin{aligned} & 189\left(b_{2}, 4\right), 236\left(b_{1}, 5\right), 520\left(a_{1}, 6\right), 1009\left(b_{2}, 8\right), 1015\left(b_{2}, 8\right), 1410\left(b_{2}, 1\right), 1512\left(a_{1}, 1\right), \\ & 1680\left(a_{1}, 24\right), 1759\left(b_{2}, 59\right), 1798\left(b_{2}, 13\right), 1813\left(b_{1}, \mathbf{3 9 8 3}\right), 2087\left(a_{1}, 33\right) \end{aligned}$
$\mathrm{D}_{\infty h}$ linear doublet ZPE $=28.43$	$41(? 2), 42(?, 2), 170(?, 8), 183(?, 6), 366(?, 2), 392(?, 1), 615(?, 1), 671(?, 2) \text {, }$ $800\left(\sigma_{\mathrm{u}}, 76\right), 1471\left(\sigma_{\mathrm{g}}, 613\right), 2042\left(\sigma_{\mathrm{u}}, 1922\right), \mathbf{2 1 9 9}\left(\boldsymbol{\sigma}_{\mathrm{u}}, \mathbf{3 1 7 0}\right)$
C_{∞} linear quartet $\mathrm{ZPE}=28.33$	$\begin{aligned} & 108(?, 4), 190(?, 1), 281(?, 2), 416(\sigma, 5), 808(\sigma, 11), 1196(\sigma, 72), 1503(\sigma, 192), 1836(\sigma, 269), \\ & 1855(\sigma, 271), 2051(\sigma, 577), 2123(\sigma, 161), 2177(\sigma, 1826) \end{aligned}$

TABLE 11 (Continued)

$\mathrm{C}_{11}{ }^{+}$	
$\begin{aligned} & \boldsymbol{C}_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=28.24 \end{aligned}$	$65\left(\mathrm{~b}_{2}, 2\right), 256\left(\mathrm{a}_{1}, 8\right), 383\left(\mathrm{~b}_{1}, 13\right), 394\left(\mathrm{~b}_{2}, 8\right), 402\left(\mathrm{~b}_{1}, 18\right), 429\left(\mathrm{a}_{1}, 20\right), 466\left(\mathrm{~b}_{2}, 38\right), 505\left(\mathrm{a}_{1}, 25\right), 974\left(\mathrm{a}_{1}, 6\right)$, 989(b2, 6), 1408($\left.\mathrm{b}_{2}, 1\right), 1614\left(\mathrm{~b}_{2}, 7\right), 1710\left(\mathrm{~b}_{2}, 4\right), 1890\left(\mathrm{a}_{1}, 22\right), 1924\left(\mathrm{a}_{1}, 3\right), 2025\left(\mathbf{b}_{2}, 111\right), 2057\left(\mathrm{a}_{1}, 98\right)$
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=30.19 \end{aligned}$	$211\left(a_{1}, 14\right), 232\left(b_{2}, 1\right), 323\left(b_{2}, 3\right), 399\left(b_{2}, 5\right), 455\left(a_{1}, 33\right), 504\left(b_{1}, 3\right), 558\left(a_{1}, 10\right), 765\left(a_{1}, 2\right), 832\left(\mathrm{~b}_{2}, 44\right),$ $1085\left(b_{2}, 6\right), 1269\left(a_{1}, 19\right), 1377\left(b_{2}, 94\right), 1459\left(b_{2}, 31\right), 1626\left(b_{2}, 61\right), 1864\left(a_{1}, 25\right), 1997\left(\mathbf{a}_{1}, 350\right), 2100\left(a_{1}, 44\right)$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear doublet } \\ & \mathrm{ZPE}=31.87 \end{aligned}$	$\begin{aligned} & 34(?, 2), 35(?, 1), 136(?, 13), 157(?, 5), 293(?, 5), 298(?, 1), 736(?, 30), 761(?, 10), \\ & 1371\left(\sigma_{\mathrm{u}}, 223\right), 1721\left(\boldsymbol{\sigma}_{\mathrm{u}}, 5984\right), 1873\left(\sigma_{\mathrm{u}}, 1539\right), 2181\left(\sigma_{\mathrm{u}}, 3022\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear quartet } \\ & \mathrm{ZPE}=31.07 \end{aligned}$	$\begin{aligned} & 34(?, 2), 34(?, 1), 135(?, 14), 154(?, 8), 293(?, 6), 350(?, 6), 724(?, 57), 732(?, 8), \\ & 1330\left(\sigma_{\mathrm{u}}, 661\right), 1736\left(\sigma_{\mathrm{u}}, 2043\right), 1825\left(\sigma_{\mathrm{g}}, 1004\right), \mathbf{2 0 9 9}\left(\boldsymbol{\sigma}_{\mathrm{u}}, 2115\right) \end{aligned}$
$\begin{aligned} & C_{12} \\ & D_{6 h} \text { cyclic doublet } \\ & \text { ZPE }=34.62 \end{aligned}$	$511\left(\mathrm{e}_{\mathrm{lu}}, 31\right), 906\left(\mathrm{e}_{\mathrm{l}}, 2\right), 1741\left(\mathrm{e}_{1 \mathrm{l}}, 95\right)$
$\begin{aligned} & \mathrm{D}_{6 h} \text { cyclic quartet } \\ & \mathrm{ZPE}=34.65 \end{aligned}$	508($\left.\left.\mathrm{e}_{\mathrm{l}}, 35\right), 916\left(\mathrm{e}_{1 \mathrm{l}}, 4\right), \mathbf{1 6 1 1 (} \mathrm{e}_{\mathrm{l} u}, \mathbf{6 6}\right)$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear doublet } \\ & \mathrm{ZPE}=35.22 \end{aligned}$	$\begin{aligned} & 29(?, 1), 30(?, 1), 134(?, 7), 141(?, 5), 273(?, 4), 282(?, 3), 664(?, 1), 680\left(\sigma_{\mathrm{u}}, 33\right), 716(?, 3), \\ & 1278\left(\sigma_{\mathrm{u}}, 294\right), 1722\left(\sigma_{\mathrm{u}}, 888\right), 2128\left(\boldsymbol{\sigma}_{\mathrm{u}}, 5552\right), 2191\left(\sigma_{\mathrm{u}}, 2268\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{\text {ov }} \text { linear quartet } \\ & \mathrm{ZPE}=35.08 \end{aligned}$	$\begin{aligned} & 79(\pi, 2), 144(\pi, 1), 217(\pi, 3), 295(\pi, 1), 349(\sigma, 4), 682(\sigma, 2), 997(\sigma, 214), 1291(\sigma, 526), \\ & 1567(\sigma, 43), 1771(\sigma, 79), 1854(\sigma, 195), 2037(\sigma, 10), 2091(\sigma, 2683), 2146(\sigma, 13), 2194(\sigma, 1575) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{13}{ }^{+} \\ & C_{1} \text { cyclic doublet } \\ & \mathrm{ZPE}=36.46 \end{aligned}$	$108(?, 1), 469(?, 1), 477(?, 1), 481(?, 1), 503(?, 68), 529(?, 1), 679(?, 24), 811(?, 173), 845(?, 7), \mathbf{1 0 0 5}(?, 480) \text {, }$ 1238(?, 7), 1239(?, 6), 1823(?, 1), 2029(?, 108), 2057(?, 258), 2067(?, 367), 2118(?, 366), 2128(?, 124)
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=36.99 \end{aligned}$	$\begin{aligned} & 14\left(b_{2}, 4\right), 396\left(a_{1}, 3\right), 408\left(b_{2}, 1\right), 436\left(a_{1}, 7\right), 454\left(\mathbf{b}_{2}, 7\right), 477\left(a_{1}, 2\right), 504\left(b_{1}, 3\right), \\ & 841\left(b_{2}, 2\right), 842\left(a_{1}, 1\right), 1026\left(\mathbf{b}_{2}, 7\right), 1890\left(a_{1}, 3\right), 1911\left(b_{2}, 3\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear doublet } \\ & \mathrm{ZPE}=37.61 \end{aligned}$	$25(?, 1), 25(?, 1), 115(?, 8), 121(?, 4), 234(?, 8), 249(?, 3), 431(?, 1), 614(?, 1), 632\left(\sigma_{\mathrm{u}}, 11\right)$, 807(?, 10), 1198($\left.\sigma_{\mathrm{u}}, 106\right), 1611\left(\boldsymbol{\sigma}_{\mathrm{u}}, 7577\right), 1678\left(\sigma_{\mathrm{u}}, 2427\right), 2062\left(\sigma_{\mathrm{u}}, 2071\right), 2205\left(\sigma_{\mathrm{u}}, 4029\right)$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear quartet } \\ & \mathrm{ZPE}=37.78 \end{aligned}$	$25(?, 1), 25(?, 1), 116(?, 8), 121(?, 6), 235(?, 8), 241(?, 5), 397(?, 3), 431(?, 1), 626\left(\sigma_{\mathrm{u}}, 23\right), 788(?, 7)$, 1177($\left.\sigma_{\mathrm{u}}, 384\right)$, 1622($\left.\boldsymbol{\sigma}_{\mathrm{u}}, 2487\right), 1645\left(\sigma_{\mathrm{u}}, 1972\right), 2021\left(\sigma_{\mathrm{u}}, 2187\right), 2131\left(\sigma_{\mathrm{u}}, 2479\right)$
$\begin{aligned} & \mathrm{C}_{14^{+}} \\ & \boldsymbol{C}_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=37.36 \end{aligned}$	147($\left.a_{1}, 33\right), 476\left(a_{1}, 2\right), 803\left(b_{2}, 3\right), 819\left(a_{1}, 6\right), 1346\left(b_{2}, 91\right)$, 2122($\mathbf{a}_{1}, 101$), 2123($\left.\mathbf{b}_{2}, 78\right)$,
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=40.57 \end{aligned}$	$\begin{aligned} & 457\left(\mathrm{a}_{1}, 1\right), 791\left(\mathrm{~b}_{2}, 1\right), 792\left(\mathrm{~b}_{1}, 1\right), 794\left(\mathrm{a}_{1}, 2\right), 1639\left(\mathrm{a}_{1}, 1\right), \\ & \mathbf{1 6 5 3}\left(\mathbf{b}_{2}, \mathbf{8 9}\right), 1930\left(\mathrm{~b}_{2}, 5\right), 1932\left(\mathrm{a}_{1}, 55\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear doublet } \\ & \mathrm{ZPE}=40.97 \end{aligned}$	$\begin{aligned} & 21(\pi, 1), 22(\pi, 1), 105(?, 5), 109(?, 4), 222(?, 6), 231(?, 4), 367(?, 1), 387(?, 1), 589\left(\sigma_{\mathrm{u}}, 14\right), 709(?, 2), \\ & 754(?, 4), 1125\left(\sigma_{\mathrm{u}}, 145\right), 1595\left(\sigma_{\mathrm{u}}, 853\right), 2017\left(\sigma_{\mathrm{u}}, 2636\right), 2141\left(\sigma_{\mathrm{u}}, 9003\right), 2207\left(\sigma_{\mathrm{u}}, 509\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear quartet } \\ & \mathrm{ZPE}=41.85 \end{aligned}$	$21(?, 1), 22(?, 1), 91(?, 16), 108(?, 4), 181(?, 15), 230(?, 5), 364(?, 6), 379(?, 1), 537(?, 2), 582\left(\sigma_{\mathrm{u}}, 6\right),$ $717(?, 2), 731(?, 3), 1108\left(\sigma_{\mathrm{u}}, 201\right), 1540\left(\sigma_{\mathrm{u}}, 475\right), 1807\left(\sigma_{\mathrm{u}}, 3649\right), 1911\left(\sigma_{\mathrm{u}}, 2903\right), 2148\left(\sigma_{\mathrm{u}}, 2752\right)$
$\begin{aligned} & \mathrm{C}_{15}{ }^{+} \\ & \boldsymbol{C}_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=42.88 \end{aligned}$	$\begin{aligned} & 134\left(\mathrm{~b}_{2}, 4\right), 470\left(\mathrm{a}_{1}, 2\right), 486\left(\mathrm{a}_{1}, 3\right), 516\left(\mathrm{a}_{1}, 1\right), 521\left(\mathbf{b}_{1}, 21\right), 580\left(\mathrm{~b}_{2}, 7\right), 757\left(\mathrm{a}_{1}, 3\right), 767\left(\mathrm{~b}_{2}, 2\right), \\ & 1831\left(a_{1}, 5\right), 2101\left(\mathrm{~b}_{2}, 3\right), 2104\left(\mathrm{a}_{1}, 2\right), 2127\left(\mathrm{~b}_{2}, 2\right), 2129\left(\mathrm{a}_{1}, 2\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=43.74 \end{aligned}$	$\begin{aligned} & 275\left(\mathrm{a}_{1}, 5\right), 321\left(\mathrm{~b}_{2}, 21\right), 419\left(\mathrm{~b}_{1}, 10\right), 748\left(\mathrm{a}_{1}, 2\right), 752\left(\mathrm{~b}_{2}, 3\right), 755\left(\mathrm{~b}_{1}, 5\right), 1164\left(\mathrm{~b}_{2}, 4\right), 1851\left(\mathrm{a}_{1}, 1\right), \\ & 1854\left(\mathrm{~b}_{2}, 1\right), 1912\left(\mathrm{~b}_{2}, 42\right), 1914\left(\mathrm{a}_{1}, 42\right), 2027\left(\mathbf{b}_{2}, \mathbf{6 6}\right), 2028\left(\mathrm{a}_{1}, 64\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear doublet } \\ & \mathrm{ZPE}=43.94 \end{aligned}$	$\begin{aligned} & 19\left(\pi_{\mathrm{u}}, 1\right), 19\left(\pi_{\mathrm{u}}, 1\right), 93(?, 6), 95(?, 3), 195(?, 8), 206(?, 4), 256(?, 8), 312(?, 1), 326(?, 3), 553\left(\sigma_{\mathrm{u}}, 2\right), \\ & 656(?, 2), 1060\left(\sigma_{\mathrm{u}}, 43\right), 1499\left(\sigma_{\mathrm{u}}, 4920\right), 1527\left(\boldsymbol{\sigma}_{\mathrm{u}}, 8547\right), 1891\left(\sigma_{\mathrm{u}}, 1493\right), 2143\left(\sigma_{\mathrm{u}}, 3173\right), 2201\left(\sigma_{\mathrm{u}}, 5029\right) \end{aligned}$
$\begin{aligned} & \mathrm{D}_{\infty h} \text { linear quartet } \\ & \mathrm{ZPE}=44.49 \end{aligned}$	$19(\pi, 1), 19(\pi, 1), 93(?, 5), 96(?, 4), 197(?, 8), 204(?, 6), 327(?, 3), 364(?, 3), 549\left(\sigma_{u}, 7\right), 839(?, 6)$, $1049\left(\sigma_{\mathrm{u}}, 220\right), 1489\left(\sigma_{\mathrm{u}}, 1518\right), 1548\left(\sigma_{\mathrm{g}}, 4943\right), 1851\left(\sigma_{\mathrm{u}}, 1214\right), 2095\left(\boldsymbol{\sigma}_{\mathrm{u}}, 5289\right), 2136\left(\sigma_{\mathrm{u}}, 1259\right)$
$D_{8 h}$ cyclic doublet ZPE $=45.64$	499(?, 30), 717(?, 8), 1693(?, 247)
$\mathrm{D}_{8 h}$ cyclic quartet ZPE $=47.13$	499(?, 35), 722(?, 11), 1482(?, 181)
$\begin{aligned} & \mathrm{C}_{17}+ \\ & \boldsymbol{C}_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=50.55 \end{aligned}$	$21\left(b_{2}, 10\right), 82\left(b_{2}, 8\right), 445\left(a_{1}, 37\right), 499\left(b_{2}, 4\right), 523\left(b_{1}, 1\right), 525\left(b_{2}, 2\right), 573\left(a_{1}, 60\right), 579\left(b_{1}, 1\right), 647\left(b_{2}, 303\right)$, 676($\left.a_{1}, 15\right), 811\left(b_{2}, 876\right), 1016(?, 6), 1016(?, 4), 2073\left(b_{2}, 6\right), 2100\left(a_{1}, 908\right), 2108\left(b_{2}, 630\right), 2123\left(a_{1}, 257\right)$, 2177($\left.\mathrm{b}_{2}, 70\right), 2177\left(\mathrm{a}_{1}, 65\right)$
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=49.70 \end{aligned}$	$\begin{aligned} & 451\left(a_{1}, 5\right), 455\left(\mathrm{~b}_{2}, 4\right), 483\left(\mathrm{~b}_{2}, 3\right), 486\left(\mathrm{a}_{1}, 4\right), 648\left(\mathrm{~b}_{1}, 2\right), 672\left(\mathrm{a}_{1}, 4\right), \\ & 673\left(\mathrm{~b}_{2}, 4\right), 866\left(\mathrm{~b}_{2}, 5\right), 1839\left(a_{1}, 5\right), 1892\left(\mathbf{b}_{2}, 7\right), 1926\left(\mathrm{a}_{1}, 2\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{12}{ }^{+} \\ & \boldsymbol{C}_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=54.16 \end{aligned}$	$\begin{aligned} & 277\left(\mathrm{~b}_{2}, 25\right), 498\left(\mathrm{~b}_{2}, 3\right), 640\left(\mathrm{a}_{1}, 8\right), 656\left(\mathrm{~b}_{2}, 10\right), 1102\left(\mathrm{a}_{1}, 195\right), \\ & 2158\left(\mathrm{~b}_{2}, 145\right), 2160\left(\mathrm{a}_{1}, 112\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{2 v} \text { cyclic quartet } \\ & \mathrm{ZPE}=51.90 \end{aligned}$	$\begin{aligned} & 118\left(\mathrm{~b}_{2}, 2\right), 481\left(\mathrm{a}_{1}, 1\right), 556\left(\mathrm{~b}_{1}, 18\right), 620\left(\mathrm{a}_{1}, 4\right), 637\left(\mathrm{~b}_{2}, 3\right), 1305\left(\mathrm{a}_{1}, 3\right), 1309\left(\mathrm{~b}_{2}, 1\right), \\ & \mathbf{1 6 3 9}\left(\mathbf{a}_{1}, 484\right), 2003\left(\mathrm{~b}_{2}, 96\right), 2050\left(\mathrm{~b}_{2}, 122\right), 2074\left(\mathrm{a}_{1}, 58\right) \end{aligned}$
$\begin{aligned} & \mathrm{C}_{19}{ }^{+} \\ & C_{2 v} \text { cyclic doublet } \\ & \mathrm{ZPE}=57.45 \end{aligned}$	$\begin{aligned} & 479\left(\mathrm{~b}_{2}, 8\right), 514\left(\mathrm{~b}_{2}, 3\right), 556\left(\mathrm{a}_{1}, 2\right), 565\left(\mathrm{~b}_{2}, 18\right), 616\left(\mathrm{a}_{1}, 7\right), \\ & 688\left(\mathrm{~b}_{1}, 4\right), 728\left(\mathrm{~b}_{1}, 8\right), 1716\left(\mathrm{a}_{1}, 32\right), 2073\left(\mathrm{~b}_{2}, 8\right), 2077\left(\mathrm{a}_{1}, 5\right) \end{aligned}$

[^2]

Figure 4. The IR activity associated with the most intense line of linear and cyclic carbon clusters.

Figure 5. Distribution of electric charges within the linear and cyclic forms of the $\mathrm{C}_{14}{ }^{+}$cluster (results of a Mulliken population analysis of a HF/cc-pVDZ calculation).
deviations. Calculated isomerization energies compare fairly well with a few available experimental data available for $\mathrm{C}_{n}{ }^{+}$ ($n=7-10$) species, indicating that DFT and $\operatorname{CCSD}(\mathrm{T})$ can be used as reliable tools to investigate the structure and energetics of highly correlated systems such as carbon cluster cations.

Compared to the results of ROHF calculations, electronic correlation effects strongly limit distortions toward strongly alternating structures, as could be expected from severe electronic degeneracies in the wave functions of, e.g., cyclic $\mathrm{C}_{6}{ }^{+}$or $\mathrm{C}_{10}{ }^{+}$. Despite the importance of electron correlation, carbon clusters exhibit upon adiabatic ionization behaviors that are reminiscent of very simple topological rules drawn from the tight-binding or Hückel picture, in particular in regards to the aromaticity or antiaromaticity of rings containing $4 n+2$ and $4 n$ vertices, respectively. As for the neutral species, the cyclic $\mathrm{C}_{4 n+2}{ }^{+}$clusters present a regular, i.e., cumulenic, structure, whereas cyclic carbon clusters $\mathrm{C}_{4 n}{ }^{+}$are clearly alternating, i.e., polyynic. From the variations in bond length alternations, it has been found that the cumulenic $\mathrm{C}_{4 n+2}$ rings tend to become more polyynic upon adiabatic ionization, whereas the opposite trend is observed for the polyynic $\mathrm{C}_{4 n}$ rings. This is true also, to a lesser extent, for the $\mathrm{C}_{4 n+1}$ and $\mathrm{C}_{4 n+3}$ cyclic clusters, which according to their behavior under ionization, can be regarded as dominantly cumulenic or polyynic, respectively. On the other hand, the linear clusters only evolve from an essentially cumulenic structure in their neutral forms to a structure with a more pronounced polyynic character after ionization. In this case, the amplitude of these distortions decreases rather rapidly with the size of chains.

TABLE 12. Adiabatic Ionization Potentials (eV) of Carbon Clusters, Obtained Using the B3LYP and the CCSD(T) Approaches ${ }^{a, b}$

		B3LYP/cc-pVDZ		$\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVDZ}$	
		doublet	quartet	doublet	quartet
C_{4}	cyclic	10.6 (-0.070)	11.2 (+0.028)	10.3	11.0
	linear	11.1 (-0.039)	$11.5(+0.008)$	9.4	9.6
C_{5}	cyclic	$10.1(+0.012)$	11.0 (-0.028)	10.0	10.9
	linear	11.0 (-0.012)	12.3 (-0.020)	10.5	12.0
C_{6}	cyclic	10.3 (+0.019)	11.1 (-0.103)	9.9	10.9
	linear	10.0 (-0.027)	10.3 (-0.017)	8.2	8.7
C_{7}	cyclic	8.3 (+0.035)	11.1 (-0.084)	8.2	11.0
	linear	10.2 (-0.015)	11.5 (-0.034)	9.7	11.1
C_{8}	cyclic	8.4 (-0.013)	9.0 (-0.101)	8.5	9.1
	linear	9.3 (-0.020)	$10.4(+0.141)$	7.6	8.9
C9	cyclic	8.6 (-0.002)	8.9 (-0.045)	8.2	8.7
	linear	9.3 (-0.074)	10.5 (-0.121)	9.1	10.6
C_{10}	cyclic	9.1 (-0.080)	$12.5(-0.167)$	9.0	12.7
	linear	$8.4(-0.018)$	9.0 (-0.028)	8.2	11.2
C_{11}	cyclic	$7.5(+0.002)$	9.7 (-0.130)	7.6	9.7
	linear	8.8 (-0.067)	9.8 (-0.105)	8.6	9.9
C_{12}	cyclic	7.8 (-0.039)	$8.2(-0.065)$	8.2	8.5
	linear	8.0 (-0.014)	8.7 (-0.033)	7.9	11.4
C_{13}	cyclic	$7.7(-0.005)$	7.9 (-0.055)		
	linear	$8.4(-0.066)$	9.3 (-0.100)		
C_{14}	cyclic	8.3 (-0.066)	10.8 (-0.223)		
C_{15}	cyclic	$7.1(-0.016)$	9.4 (-0.062)		
C_{16}	cyclic	7.3 (-0.155)	7.7 (-0.090)		
C_{17}	cyclic	7.3 (-0.0005)	7.5 (-0.038)		
C_{18}	cyclic	7.8 (-0.042)	$9.2(-0.140)$		
C_{19}	cyclic	$6.4(+0.036)$			

${ }^{a}$ B3LYP results incorporate the variations of zero-point vibrational energies (in parentheses). ${ }^{b}$ Available experimental values: aIP(C_{4}), 12.6 $\mathrm{eV}{ }^{, 57} \operatorname{aIP}\left(\mathrm{C}_{5}\right), 12.5 \pm 0.1 \mathrm{eV},{ }^{57} 12.7 \pm 0.5 \mathrm{eV} ;{ }^{58} \operatorname{aIP}\left(\mathrm{C}_{6}\right), 12.54 \pm 0.3$ $\mathrm{eV},{ }^{58} 9.6 \pm 0.3 \mathrm{eV} .{ }^{59}$

Figure 6. Size dependence of the adiabatic ionization potential of linear and cyclic C_{n} clusters.

The linear carbon cations exhibit a much more pronounced IR intensity than the cyclic ones. Many of the studied species show a strong absorption in certain regions of the spectrum (e.g., around $2036 \mathrm{~cm}^{-1}$). No linear $\mathrm{C}_{n}{ }^{+}$species ($n=4-15$) appear to absorb in the $2247-2253 \mathrm{~cm}^{-1}$ region where IR activity has been observed experimentally.

A main conclusion of the present study is that detailed investigations of the adiabatic ionization process of carbon clusters can provide very specific insights into their electronic and structural properties. Specific markers of the cumulenic or polyynic character of carbon chains or rings that could possibly be exploited in future experimental investigations are provided by the adiabatic ionization potentials and the contrasted structural modifications induced by ionization, which can be
indirectly traced from the symmetry of the inertia tensor and the infrared activity.

Acknowledgment. M.S.D. thanks the "Fonds voor Wetenschappelijk Onderzoek van Vlaanderen", the Flemish Science Foundation, for his senior research assistant position at the Limburgs Universitair Centrum. M.G.G. acknowledges financial support from the "Bijzonder Onderzoeksfonds" (BOF) of the Limburgs Universitair Centrum. The authors warmly acknowledge computational support from Prof. J. Martin, Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, where some of the calculations presented here have been performed (namely, the $\operatorname{CCSD}(\mathrm{T})$ calculations for the $\mathrm{C}_{12}{ }^{+}-$ $\mathrm{C}_{15}{ }^{+}$clusters in their cyclic form). The authors also thank Dr. J. El-Yazal for his kind help.

Supporting Information Available: Atomic cartesian coordinates of the $\mathrm{C}_{n}{ }^{+}(n=4-19)$ clusters optimized via DFT/ B3LYP calculations in conjunction wiht the cc-pVDZ basis set. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Weltner, W., Jr.; Van Zee, R. J. Chem. Rev. 1989, 89, 1713; J. Mol. Struct. 1990, 222, 201.
(2) Hutter, J.; Lüthi, H. P.; Diederich, F. J. Am. Chem. Soc. 1994, 116, 750.
(3) Martin, J. M. L.; Taylor, P. R. J. Phys. Chem. 1996, 100, 6047.
(4) Raghavachari, K.; Curtiss, L. A. Accurate Theoretical Studies of Small Elemental Clusters. In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy; Langhoff, S. R., Ed.; Kluwer: Dordrecht, 1995.
(5) Krätschmer, W.; Nachtigall, K. In Polycyclic Aromatic Hydrocarbons and Astrophysics; Lèger, A., et al., Eds.; Reidel: Dordrecht, 1987.
(6) Cermak, I.; Monninger, G.; Krätschmer, W. Advances in Molecular Structure Research; JAI Press, 1997; Vol. 3, pp 117-146.
(7) Bollick, E. A.; Ramsey, D. A. J. Chem. Phys. 1958, 29, 1418; Astrophys. J. 1963, 137, 84.
(8) Hinkle, K. H.; Keady, J. J.; Bernath, P. F. Science 1988, 241, 1319 and references therein.
(9) Celii, F. G.; Butler, J. E. Annu. Rev. Phys. Chem. 1991, 42, 643 and references therein. Levy Guyer, R.; Koshland, D. E., Jr. Science 1990, 250, 1640.
(10) ZFI Mitteilungen, nr. 134: Beiträge zur Clusterforschung, Academie der Wissenschaften der DDR, September 1987.
(11) Curl, R. F. Rev. Mod. Phys. 1997, 69, 691.
(12) Kroto, H. Rev. Mod. Phys. 1997, 69, 703.
(13) Smalley, R. F. Rev. Mod. Phys. 1997, 69, 723.
(14) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: New York, 1996.
(15) Hare, J. P.; Hsu, W. K.; Kroto, H. W.; Lappas, A.; Prassides, K.; Terrones, M.; Walton, D. R. M. Chem. Mater. 1996, 8, 6.
(16) Edwards, J. B. Combustion: Formation and Emission of Trace Species; Ann Arbor Science: Ann Arbor, MI, 1974.
(17) Raghavachari, K.; Binkley, J. S. J. Chem. Phys. 1987, 87, 2191.
(18) Martin, J. M. L.; El-Yazal, J.; François, J. P. Chem. Phys. Lett. 1995, 242, 570; 1996, 252, 9.
(19) Brown, W. L.; Freeman, R. R.; Raghavachari, K.; Schlüter, M. Science 1987, 235, 860.
(20) Radi, P. P.; von Helden, G.; Hsu, M. T.; Kemper, P. R., Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1991, 109, 49. von Helden, G.; Hsu, M. T.; Gotts, N. G.; Bowers, M. T. J. Phys. Chem. 1993, 97, 8182.
(21) Kemper, P. R.; Bowers, M. T. J. Phys. Chem. 1991, 95, 5134.
(22) von Helden, G.; Gotts, N. G.; Palke, W. E.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1994, 138, 33. von Helden, G.; Gotts, N. G.; Bowers, M. T. Chem. Phys. Lett. 1993, 212, 24.
(23) Kroto, H. W.; Walton, D. R. M. The Fullerenes. New Horizons for the Chemistry, Physics and Astrophysics of Carbon; Cambridge University Press: New York, 1993.
(24) (a) Peierls, R. E. Quantum Theory of Solids; Clarendon Press: Oxford, 1955. (b) Walatka, V. V.; Labes, M. M.; Perlstein, J. H. Phys. Rev. Lett. 1973, 31, 1139. (c) Greene, L.; Street, G. B.; Suter, L. J. Phys. Rev. Lett. 1977, 38, 1305.
(25) Harris, D. C.; Bertolucci, M. D. Symmetry and Spectroscopy; Dover Publications: New York, 1989.
(26) Vala, M.; Chandrasekhar, T. M.; Szczepanski, J.; Pellow, R. J. Mol. Struct. 1990, 222, 209.
(27) Parr, R. G.; Wang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
(28) Raghavachari, K.; Trucks, G. W.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1989, 157, 479.
(29) Hample, C.; Peterson, K.; Werner, H. J. Chem. Phys. Lett. 1992, 190, 1.
(30) Lee, J. T.; Scuseria, E. G. Achieving Chemical Accuracy with Coupled-Cluster Theory. In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy; Langhoff, S. R., Ed.; Kluwer: Dordrecht, 1995.
(31) Andersson, K.; Malmqvist, P-Å.; Roos, B. O.; Sadlej, A. J.; Wolinski, K. J. Phys. Chem. 1990, 94, 5483.
(32) Martin J. M. L.; El-Yazal, J.; François, J.-P. Mol. Phys. 1995, 86, 1437.
(33) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(34) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37B, 785.
(35) Perdew, J. P. In Electronic Structure of Solids; Ziesche, P., Eschrig, H., Eds.; Akademic Verlag: Berlin, 1991. Perdew, J. P. Physica 1991, B172, 1.
(36) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(37) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94, revision B.1; Gaussian, Inc.: Pittsburgh, PA, 1995.
(38) MOLPRO 94 is an ab initio MO package by Werner, H.-J.; Knowles, P. J. with contributions from Almlöf, J.; Amos, R. D.; Deegan, M. J. O.; Elbert, S. T.; Hampel, C.; Meyer, W.; Peterson, K.; Pitzer, R.; Stone, A. J.; Taylor, P. R. (University of Birmingham, 1996).
(39) Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bernholdt, D. E.; Bartlett, R. J. ACES II, an ab initio program system; Quantum Theory Project, University of Florida: Gainesville, FL, 1992. This package includes: Almlöf, J.; Taylor, P. R. MOLECULE, a vectorized Gaussian integral program. Helgaker, T.; Jørgensen, P.; Jensen, H. J. A.; Olsen, J.; Taylor P. R. ABACUS, a Gaussian integral derivative and molecular properties program. See also: Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bernholdt, D. E.; Bartlett, R. J. Int. J. Quantum Chem. Symp. 1992, 26, 879.
(40) Giuffreda, M. G. Unpublished results.
(41) March, J. Advanced Organic Chemistry; Wiley \& Sons: New York, 1985.
(42) André, J.-M.; Delhalle, J.; Brédas, J.-L. Quantum Chemistry Aided of Organic Polymers; World Scientific Lecture and Course Notes in Chemistry 2; World Scientific Publishing: River Edge, NJ, 1991.
(43) Jahn, H. A.; Teller, E. Proc. R. Soc. 1937, A161, 220.
(44) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
(45) Becke, A. D. J. Chem. Phys. 1988, 88, 2547.
(46) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(47) Godbout, N.; Salahub, D. R.; Andzelm, J. W.; Wimmer, E. Can. J. Chem. 1992, 70, 560.
(48) Herzberg, G. Molecular Spectra and Molecular Structure. Infrared and Raman spectra of polyatomic molecules; van Nostrand Reinhold: New York, 1945. Kroto, H. W. Molecular Rotation Spectra; Dover Publications: New York, 1992.
(49) Zare, R. N. Angular Momentum; J. Wiley: New York, 1988.
(50) Kemper, P. R.; Bowers, M. T. J. Am. Chem. Soc. 1990, 112, 3231.
(51) Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. Symp. 1989, 23, 199.
(52) Martin, J. M. L.; Lee, T. J.; Scuseria, G. E.; Taylor, P. R. J. Chem. Phys. 1997, 9, 6549.
(53) (a) André, J.-M. In Large Finite Systems; Jortner, J., et al., Eds.; D Reidel: Dordrecht; 1997; p 277. (b) Deleuze, M.; Delhalle, J.; Pickup, B. T. Theor. Chim. Acta 1992, 82, 309.
(54) Szczepanski, J.; Ekern, S.; Chapo, C.; Vala, M. Chem. Phys. 1996, 211, 359.
(55) Szczepanski, J.; Ekern, S.; Vala, M. J. Phys. Chem. A 1997, 101, 1941.
(56) Szczepanski, J.; Ekern, S.; Vala, M. J. Phys. Chem. 1995, 99, 8002.
(57) Drowart, J.; Burns, R. P.; Demaria, G.; Inghram, M. G. J. Chem. Phys. 1959, 31, 1131.
(58) Dideler, V. H.; Reese, R. M.; Franklin, J. L. J. Am. Chem. Soc. 1961, 93, 1813.
(59) Bach, S. B. H.; Eyler, J. R. J. Chem. Phys. 1990, 92, 358.
(60) (a) Deleuze, M.; Delhalle, J.; Pickup, B. T.; Calais, J.-L. Phys. Rev. B 1992, 46, 15668. (b) Deleuze, M.; Delhalle, J.; Pickup, B. T.; Calais,
J.-L. Adv. Quantum Chem. 1995, 26, 35. (c) Deleuze, M.; Scheller, M. K.; Cederbaum, L. S. J. Chem. Phys. 1995, 103, 3578. (d) Deleuze, M.; Cederbaum, L. S. Phys. Rev. B 1996, 53, 13326. (e) Deleuze, M.; Cederbaum, L. S. J. Chem. Phys. 1996, 105, 7583. (f) Deleuze, M.;
Cederbaum, L. S. Adv. Quantum Chem., in press.
(61) (a) Cederbaum, L. S.; von Niessen, W. Chem. Phys. Lett. 1974, 24, 263. (b) Cederbaum, L. S. Chem. Phys. Lett. 1974, 25, 562. (c) Cederbaum, L. S.; Domcke, W.; Schirmer, J.; von Niessen, W. Phys. Scrip. 1980, 21, 481.
(62) Koopmans, T. Phys. (Utr.) 1933, 1, 104.
(63) Ortiz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1994, 100, 6614.
(64) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Macmillan: New York, 1982.
(65) (a) Deleuze, M. S.; Giuffreda, M. G.; François, J.-P.; Cederbaum, L. S. Valence one-electron and shake-up ionization bands of carbon clusters. I. The $C_{n}(n=3,5,7,9)$ chains. Submitted. (b) Deleuze, M. S.; Giuffreda, M. G.; François, J.-P.; Cederbaum, L. S. Valence one-electron and shakeup ionization bands of carbon clusters. II. The $\mathrm{C}_{n}(n=4-10)$ rings. To be submitted.

[^0]: * To whom correspondence should be addressed.

[^1]: ${ }^{a}$ von Helden, G; Gotts, N. G.; Palke, W. E.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1994, 138, 33. ${ }^{b}$ Davidson quadruple corrected CI-SD.

[^2]: ${ }^{a}$ Only IR active modes with intensity $\geq 1 \mathrm{~km} / \mathrm{mol}$ are given. The most stable isomer is displayed in bold as well as the most intense harmonic frequencies. The zero-point energies (ZPE) are expressed in $\mathrm{kcal} / \mathrm{mol}$. (?) indicates that no definite symmetry assignment of the harmonic vibration modes was possible from the GAUSSIAN94 outputs.

